
Cutting the Software Building Efforts in Continuous Integration by
Semi-Supervised Online AUC Optimization∗

Zheng Xie and Ming Li
National Key Laboratory for Novel Software Technology, Nanjing University

Collaborative Innovation Center for Novel Software Technology and Industrialization
Nanjing 210023, China

{xiez, lim}@lamda.nju.edu.cn

Abstract
Continuous Integration (CI) systems aim to provide
quick feedback on the success of the code changes
by keeping on building the entire systems upon
code changes are committed. However, building
the entire software system is usually resource and
time consuming. Thus, build outcome prediction
is usually employed to distinguish the successful
builds from the failed ones to cut the building ef-
forts on those successful builds that do not result
in any immediate action of the developer. Never-
theless, build outcome prediction in CI is challeng-
ing since the learner should be able to learn from
a stream of build events with and without the build
outcome labels and provide immediate prediction
on the next build event. Also, the distribution of
the successful and the failed builds are often highly
imbalanced. Unfortunately, the existing methods
fail to address these challenges well. In this pa-
per, we address these challenges by proposing a
semi-supervised online AUC optimization method
for CI build outcome prediction. Experiments in-
dicate that our method is able to cut the software
building efforts by effectively identify the success-
ful builds, and it outperforms the existing methods
that elaborate to address part of these challenges.

1 Introduction
Accurately identifying defective modules in software systems
is crucial for software development. Continuous Integration
(CI) [Booch, 1991; Duvall et al., 2007] is an effective mech-
anism to get quick feedbacks on whether the committed code
changes are problematic that result in a failure of system
build. If the committed code fails the build or test, the devel-
opers can be warned immediately so that they can re-check
or revise the code before plugging the defective code into the
systems. However, in most cases, the successful builds make
up the majority of the build events, and usually take several

∗This research was supported by National Key Research and De-
velopment Program (2017YFB1001903) and NSFC (61422304).

hours for large projects. Since the successful builds do not
provide any guidance on immediate action of the developers,
most of the build efforts are wasted.

In this circumstance, predicting whether a build will pass
or fail can help to reduce the building efforts, since we can
cut the building efforts on those successful builds and pri-
oritize the resources for the failed builds. Such a task is
known as continuous build outcome prediction [Hassan and
Zhang, 2006] or continuous defect prediction [Madeyski and
Kawalerowicz, 2017]. Efforts have been made on this task,
e.g., Finlay et al. [2014] and Hassan and Zhang [2006] used
tree-based methods with different group of features for pre-
diction, Ni and Li [2017] used cascaded classifiers to improve
the accuracy of finding failed builds.

However, although previous attempts have indicated that
predicting software build outcome is possible and beneficial,
few of them actually construct the learning model that per-
fectly fits the following characteristics of the CI build out-
come prediction task:

• Streaming data. As the development of the software sys-
tem goes on, every commit would trigger a CI event. The
prediction model is supposed to learn from the series of
CI events from scratch and at the same time predict the
build outcome for each arrived CI event.
• Few build outcome label. Due to the heavy computa-

tional cost for CI builds and limited resources, the build
will be actually conducted on a tiny little portion of the
commits to get the build outcome labels. The learner
has to exploit the unlabeled build records for model con-
struction.
• Imbalance in build outcomes. In most cases, the devel-

opers will commit the code that are considered as correct
for CI, which makes the builds more likely to success.
• Suspiciousness of build event required. To make the

build outcome prediction flexible in practice, the suspi-
ciousness of the outcome prediction for each build event
is required, such that the workload of the CI server can
be configured and adjust as required based on the pro-
vided suspiciousness.

These characteristics have place great challenges to the
model construction for CI build outcome prediction. Unfortu-

nately, few existing studies, to our best knowledge, have ever
address all these challenges simultaneously in model con-
struction.

In this paper, we propose a novel semi-supervised on-
line AUC optimization method, named SOLA, for continuous
build outcome prediction, which is capable of handling all
the challenges mentioned above. Optimizing AUC makes the
classifier intrinsically insensitive to the imbalanced data, and
have the ability of ranking the build events according to the
suspiciousness. To enable AUC optimization to exploit both
labeled and unlabeled data in an online situation, we lever-
age the nature of semi-supervised AUC optimization that the
unlabeled data can be used without estimating their possible
labels, and formulate the problem into a saddle point problem
to solve it online. Experiments show that our method can cut
the building efforts in CI by accurately identifying the failed
builds, and outperforms the existing methods that only par-
tially address the challenges.

2 Background and Related Work
2.1 Continuous Integration
Continuous Integration was first proposed by Booch to pre-
vent integration problems in extreme programming [Booch,
1991]. Together with automated system build and test, it
can avoid the risk of one developer’s defective work affect-
ing another developer’s copy. Nowadays, CI systems provide
multiple services including testing, deploying, feedback, etc.
Besides CI systems like Jenkins and Microsoft Team Founda-
tion Server that can be deployed locally, CI cloud platforms
like Travis CI have drawn much attention, especially among
open-source projects.

A typical continuous integration pipeline is shown in Fig-
ure 1. Once a developer commits his change to the version
control system, the CI server will pull the latest code and
execute the build script, which usually consist of compila-
tion, testing, inspection, and deployment. The build results
are returned to all the related developers, to help them local-
ize the software defects. CI saves a lot of human efforts, as
well as reduces risk, by automatically executing the repetitive
testing and deployment process. According to [Hilton et al.,
2016], CI increases the software release frequency by more
than 200%.

However, a major drawback of using CI is unproductive
time [Hilton et al., 2016], that is, the developers have to wait
the CI system’s feedback to determine whether to re-check
the code, which may takes hours to days. In this circum-
stance, build outcome prediction is employed to distinguish
the successful builds from the failed ones to cut the build-
ing efforts on those successful builds that do not result in any
immediate action of the developer.

Researchers have proposed different approaches for build
outcome prediction. Finlay et al. [2014] used a tree-based
method with a group of features for build outcome prediction,
and Hassan and Zhang [2006] used Hoeffding Tree to enable
the build outcome prediction in an online circumstance. Ni
and Li [2017] used cost-sensitive cascaded classifiers to im-
prove the accuracy of finding failed builds and reduce the CI
cost. There are also researches attempting to reduce the time

Version Control System Continuous Integration

System

CI Report
Build: Fail

xxxxx

xxxxx

Feedback

Developer Developer Developer

Commit Commit Commit

Pull Codes

Generate

Figure 1: Continuous Integration Pipeline.

cost by improving the unit test in CI. For example, Cam-
pos et al. [2014] leveraged the historical data to help the
budget allocation among code units and the seeding process
for the test case generation. All existing researches that aim
to improve the prediction accuracy tried to utilize different
machine learning techniques to address different challenges.
However, none of them pointed all of the four challenges in
CI build outcome prediction, and they can only partially ad-
dress the challenges.

A related task of continuous build outcome prediction is
called just-in-time defect prediction, which aims to conduct
accurate defect prediction on change level. Just-in-time de-
fect prediction can also be deployed on CI systems, making
predictions after the changes are made with commit infor-
mation. Existing researches on just-in-time defect prediction
mainly focus on building learning pipelines to improve the
prediction performance, but do not consider about exploiting
the unlabeled data or updating model efficiently and incre-
mentally [Kamei et al., 2016; Yang et al., 2017].

2.2 AUC Optimization
AUC is a widely-used performance measure for classifiers,
especially for problems that are highly imbalanced. Optimiz-
ing AUC is a common method to learn classifiers that rank
the positive data before the negative data. Due to the nature
of AUC optimization, it is a suitable way to handle the last
two challenges, i.e., handling the imbalance and providing
the suspiciousness. However, none of the methods of AUC
optimization proposed so far can exploit the unlabeled data
in an online situation.

Owing to the non-convexity and discontinuousness of AUC
risk, many surrogate losses are proposed to simplify the op-
timization. Gao and Zhou [2015] studied the consistency of
the surrogate losses theoretically. For online AUC optimiza-
tion, Zhao et al. [2011] first attempted to extend AUC op-
timization into online circumstance by maintaining a reser-
voir. Later, Gao et al. [2013] proposed a method that main-
tains a covariance matrix to optimize AUC online, and Ying et
al. [2016] formulated the online AUC optimization problem
as a stochastic saddle point problem to solve it with stochastic
gradient based algorithm.

For AUC optimization in semi-supervised circumstance,
Amini et al. [2008] extended the RankBoost algorithm to
semi-supervised case to learn a ranking function. Fujino and
Ueda [2016] used a generative model based algorithm to ex-
ploit unlabeled data to optimize AUC. Sakai et al. [2018]
proposed a semi-supervised AUC optimization method by
reweighting the unlabeled data, from a positive-unlabeled
learning perspective. Xie and Li [2018] proved that in semi-
supervised AUC optimization problem, directly using unla-
beled data as both positive and negative data can lead to un-
biased AUC optimization.

Although there are researches that extend the AUC opti-
mization into online or semi-supervised learning, none of the
researches combines them up since it is difficult to estimate
the distribution of the data when the instances come sequen-
tially. We overcome this obstacle by leveraging the nature
of semi-supervised AUC optimization that the unlabeled data
can be used without estimating their possible label [Xie and
Li, 2018], and propose the first semi-supervised online AUC
optimization method.

3 Semi-Supervised Online AUC Optimization
To address the continuous build outcome prediction problem,
in this section, we describe our SOLA (Semi-Supervised On-
line AUC Optimization) method.

LetXP andXN denote the set of failed and successful build
events, respectively. Since not all of the build events are ex-
ecuted due to the limited computational resources, we also
have a set of unlabeled instances, XU. AUC over labeled in-
stances can be formalized as:

AUC = 1− E
x∈XP

[E
x′∈XN

[`01(w
>(x− x′))]] . (1)

And thus the AUC optimization problem can be formulated
as an empirical risk minimization problem. With an `2 regu-
larizer, the minimization of AUC risk can be formulated as:

min
||w||<R

RPN(w) , (2)

where
RPN = E

x∈XP

E
x′∈XN

`(w>(x− x′)) (3)

is the supervised (positive vs. negative) AUC risk. Here
nP and nN are the number of failed and successful build
events, respectively. In practice, we use the square loss
`(z) = (1− z)2 instead of the 0-1 loss, because the 0-1 loss
is discrete and difficult to optimize. It has been proved that
the square loss is consistent with AUC risk [Gao and Zhou,
2015]. The AUC can be regarded as a pairwise ranking loss,
which makes it naturally suitable for handling imbalanced
data and ranking the build events by suspiciousness.

Since the estimation of the data distribution can be hard
when data comes sequentially, it is difficult to exploit the
unlabeled data for online AUC optimization. We try to
overcome this obstacle by leveraging the nature of semi-
supervised AUC optimization that optimizing the probability
of a randomly drawn positive instance being ranked before a
randomly drawn unlabeled instance (or an unlabeled instance
being ranked before a negative instance) is equivalent to an

unbiased AUC optimization [Xie and Li, 2018]. With this na-
ture, to exploit the unlabeled data, the semi-supervised AUC
optimization can be formulated as a minimization problem of
the following loss function consisting of three risk estimators:

min
||w||<R

γRPN + (1− γ)(RPU +RNU) , (4)

where γ ∈ [0, 1] is the trade-off parameter of supervised risk
and semi-supervised risk, and

RPU = E
x∈XP

E
x′′∈XU

`(w>(x− x′′)) , and (5)

RNU = E
x′′∈XU

E
x′∈XN

`(w>(x′′ − x′)) (6)

are semi-supervised risk estimators.
Directly applying Eq. (4) is still not scalable for streaming

data, but it provides us a way to exploit the unlabeled data
without estimating the data distribution. Another obstacle to
extending Eq. (4) into online circumstance is that the risk of
AUC is defined over instance pairs, so it is infeasible to solve
the problem by directly using stochastic gradient descent. To
overcome this problem, we rewrite Eq. (4) into a saddle point
problem, and propose an algorithm that can update the model
online by a mini-max procedure.

We construct the following saddle point problem, which is
equivalent to Eq. (4):

min
||w||<R,
a1,b1,
a2,b2,
a3,b3

max
α1,α2,α3

γfPN(w, a1, b1, α1)

+ (1− γ)
(
fPU(w, a2, b2, α2)

+ fNU(w, a3, b3, α3)
)
,

(7)

where

fPN(w, a, b, α) = E
x
[FPN(w, a, b, α;x)] ,

fPU(w, a, b, α) = E
x
[FPU(w, a, b, α;x)] ,

fNU(w, a, b, α) = E
x
[FNU(w, a, b, α;x)] ,

and

FPN(w, a, b, α;x) = −
nPnN
nP + nN

α2

+ nNI[x∈XP]

(
(w>x− a)2 − 2(1 + α)w>x

)
+ nPI[x∈XN]

(
(w>x− b)2 + 2(1 + α)w>x

)
,

FPU(w, a, b, α;x) = −
nPnU
nP + nU

α2

+ nUI[x∈XP]

(
(w>x− a)2 − 2(1 + α)w>x

)
+ nPI[x∈XU]

(
(w>x− b)2 + 2(1 + α)w>x

)
,

FNU(w, a, b, α;x) = −
nUnN
nU + nN

α2

+ nNI[x∈XU]

(
(w>x− a)2 − 2(1 + α)w>x

)
+ nUI[x∈XN]

(
(w>x− b)2 + 2(1 + α)w>x

)
.

Next, we prove the equivalency of Eq. (4) and Eq. (7) and
then give the algorithm to solve the Eq. (7).

The proof of the equivalency of Eq. (4) and Eq. (7) is
based on [Ying et al., 2016]. We first prove that RPN =
min||w||<R,a,bmaxα Ex[FPN(w, a, b, α;x)]. The AUC risk
RPN can be rewritten as:

RPN = E
x∈XP

E
x′∈XN

`(w>(x− x′))

= E
x∈XP

[(w>x)2] + E
x′∈XN

[(w>x′)2]−

2 E
x∈XP

[w>x] + 2 E
x′∈XN

[w>x′]−

2 E
x∈XP

[w>x] E
x′∈XN

[w>x′] + 1

= 1 + (E
x∈XP

[(w>x)2]− (E
x∈XP

[w>x])
2
)+

(E
x′∈XN

[(w>x′)2]− (E
x′∈XN

[w>x′])
2
)−

2 E
x∈XP

[w>x] + 2 E
x′∈XN

[w>x′]+

(E
x∈XP

[w>x]− E
x′∈XN

[w>x′])
2
.

Notice that

E
x∈XP

[(w>x)2]− (E
x∈XP

[w>x])
2
= min

a
E

x∈XP

[(w>x− a)2] ,

E
x′∈XN

[(w>x′)2]− (E
x′∈XN

[w>x′])
2
= min

b
E

x′∈XN

[(w>x′ − b)2] ,

where the minimization is achieved by a = Ex∈XP
[w>x],

and b = Ex′∈XN
[w>x′]. Also we have

(E
x∈XP

[w>x]− E
x′∈XN

[w>x′])
2
=

max
α

2α(E
x′∈XN

[w>x′]− E
x∈XP

[w>x])− α2 ,

the maximization is achieved by α = Ex′∈XN [w
>x′] −

Ex∈XP
[w>x]. Above all, we have

RPN = 1 + min
||w||<R,
a,b

max
α

E
x
[FPN(w, a, b, α;x)] . (8)

With a similar proof, we have

RPU = 1 + min
||w||<R,
a,b

max
α

E
x
[FPU(w, a, b, α;x)] , (9)

RNU = 1 + min
||w||<R,
a,b

max
α

E
x
[FNU(w, a, b, α;x)] , (10)

and thus Eq. (4) equivalent to Eq. (7).
Since function fPN, fPU, and fNU is convex in primal vari-

ables (w, a, b) and concave in dual variable α, Eq. (7) can be
solved by gradient descent in (w, a1, b1, a2, b2, a3, b3) and
gradient ascent in (α1, α2, α3). Instead of using a full gra-
dient of fPN, fPU, and fNU, we use the gradient of FPN,
FPU, and FNU as an unbiased gradient estimator to update
the model with each instance, which can be calculated on ev-
ery single instance.

Each labeled or unlabeled instance effects two of FPN,
FPU, and FNU. Thus, at each iteration, the gradient of two
functions should be computed, gradient descent in the primal

variables and gradient ascent in the dual variables. The up-
date rule for the model weight w is:

w(t+1) ← w(t) − η(t)γ ∂FPN(x
(t))

∂w(t)

− η(t)(1− γ)(∂FPU(x
(t))

∂w(t)
+
∂FNU(x

(t))

∂w(t)
) ,

(11)

For other optimization variables, the update rule for FPN is:

(a
(t+1)
1 , b

(t+1)
1)← (a

(t)
1 , b

(t)
1)− η(t)γ ∂FPN(x

(t))

∂(a
(t)
1 , b

(t)
1)

, (12)

α
(t+1)
1 ← α

(t)
1 + η(t)γ

∂FPN

∂α
(t)
1

. (13)

The update rule for FPU is:

(a
(t+1)
2 , b

(t+1)
2)← (a

(t)
2 , b

(t)
2)− η(t)(1− γ)∂FPU(x

(t))

∂(a
(t)
2 , b

(t)
2)

, (14)

α
(t+1)
2 ← α

(t)
2 + η(t)(1− γ)∂FPU

∂α
(t)
2

. (15)

And the update rule for FNU is:

(a
(t+1)
3 , b

(t+1)
3)← (a

(t)
3 , b

(t)
3)− η(t)(1− γ)∂FNU(x

(t))

∂(a
(t)
3 , b

(t)
3)

, (16)

α
(t+1)
3 ← α

(t)
3 + η(t)(1− γ)∂FNU

∂α
(t)
3

. (17)

The procedure of the algorithm is shown in Algorithm 1. It
is noteworthy that even if one of the three types (i.e., positive,
negative, and unlabeled) of data is missing, SOLA can still
work and learn meaningful models, since it is updated over
single instances.

Algorithm 1 SOLA

1: Initialize t← 0, n
(0)
P ← 0, n

(0)
N ← 0, n

(0)
U ← 0

2: Initialize optimization variables at random
3: for each x(t+1) available do
4: if x(t+1) is a positive labeled instance then
5: n

(t+1)
P ← n

(t)
P + 1

6: Update (a1, b1, α1) by Eq. (12) and Eq. (13)
7: Update (a2, b2, α2) by Eq. (14) and Eq. (15)
8: if x(t+1) is a negative labeled instance then
9: n

(t+1)
N ← n

(t)
N + 1

10: Update (a1, b1, α1) by Eq. (12) and Eq. (13)
11: Update (a3, b3, α3) by Eq. (16) and Eq. (17)
12: if x(t+1) is an unlabeled instance then
13: n

(t+1)
U ← n

(t)
U + 1

14: Update (a2, b2, α2) by Eq. (14) and Eq. (15)
15: Update (a3, b3, α3) by Eq. (16) and Eq. (17)
16: Calculate w(t+1) by Eq. (11)
17: if ||w(t+1)|| > R then
18: w(t+1) ← Rw(t+1)/||w(t+1)||
19: t← t+ 1

4 Experiments
4.1 Datasets
To conduct continuous build outcome prediction, two source
of data should be used: continuous integration systems and
version control systems. The former provides build results
and the other build information with corresponding commit
ID, while we can obtain the information about the project,
code changes and developers from the latter. Madeyski and
Kawalerowicz [2017] proposed a dataset for continuous build
outcome prediction, which consists of 1265 open source
projects using CI and being hosted on GitHub. Those projects
use CI services provided by three mainstream CI platforms:
Jenkins, Travis CI, and TeamCity. Besides the build records
with clear outcome label, i.e., success and failure, all of the
three platforms provide unclear build outcome labels includ-
ing “not build”, “aborted”, “unstable” on Jenkins, “errored”
on Travis CI, and “error”, “warning”, “unknown” on Team-
City. Build records with unclear labels are marked as “un-
known” in the dataset, which can be regarded as unlabeled
instances during learning process.

The data of different project varies significantly in terms of
the total number of build records, the percentage of labeled
records, and the ratio of successful build to failed build. To
study the performance of the methods in different cases, we
choose 8 projects with different imbalanced ratio and size to
evaluate our method and compared methods. Projects with
less than 200 labeled records are not chosen since we have to
hold some labeled records out for evaluation. The statistics
of the projects are shown in Table 1. We use the features
provided in [Madeyski and Kawalerowicz, 2017], as well as
some other features computed from the commit log. Features

Project Name #Success #Failure #Unknown S:F

deeplearning4j 5 426 422 0.01
capybara 173 185 106 0.94
killbill 841 332 790 2.53
rails 8,048 2,792 805 2.88
codetriage 242 32 15 7.56
oryx 346 40 31 8.65
phony 332 29 24 11.45
stringer 293 9 9 32.56

Table 1: Statistics of the projects. For each project, the numbers of
successful, failed, and unknown build records are shown. S:F refers
to the ratio of successful builds to failed builds.

Abbr. Feature

LBO Last Build Outcome
NR Number of Revisions
NRC Number of Revised Code Files
NML Number of Modified Lines
NMLC Number of Modified Lines in Code Files
NDC Number of Distinct Committers
NC Number of Commits

Table 2: Used features of each build record.

that irrelevant to the learning like commit ID and build time
are removed. Table 2 shows the features used to build the
model.

4.2 Compared Methods
We compare our method with a number of competing base-
line methods to demonstrate that it is necessary to handle the
four challenges simultaneously. The compared methods are:

• Hoeffding Tree [Finlay et al., 2014]: a Hoeffding Tree
based method for handling streaming data of software
build outcome. This method is capable for handling
streaming data, but fails to handle the other three chal-
lenges.

• OMR [Goldberg et al., 2008]: a semi-supervised method
that learns from sequential labeled and unlabeled data,
by conducting online manifold regularization. It does
not take the imbalance of data into consideration, which
may harm the performance.

• SOLAM [Ying et al., 2016]: an online AUC optimiza-
tion method. By leveraging AUC optimization, SOLAM
can also handle the imbalanced data, as well as provid-
ing the suspiciousness of the build events. However, it
cannot exploit the unlabeled data.

• SAMULT [Xie and Li, 2018]: a batch semi-supervised
AUC optimization method. Although it cannot handle
the streaming data and can be ineffective in practice, we
use it as an upper bound reference of our method in the
experiments.

4.3 Performance
We evaluate the performance of compared methods. For each
project, the last 100 labeled instances are used as test set, and
the instances before the 100th last labeled instance are used
as training data. The unlabeled instances after the 100th last
labeled instance are ignored. We use the AUC as performance
measure, which reflects the ranking ability of the methods.
The performance of compared methods are shown in Table 3.

Compared with the method designed for build outcome
prediction. SOLA beats Hoeffding Tree on most of the
projects. It is noteworthy that when the data is highly im-
balanced, e.g., deeplearning4j, phony, stringer, and so on,
Hoeffding Tree fails to learn meaningful models, which leads
to a 0.5 AUC score or lower. When the dataset is relatively
balanced, Hoeffding Tree can learn a reasonable model from
relative sufficient positive and negative data. However, by op-
timizing AUC, SOLA can learn meaningful models whether
the data is balanced or not. SOLA achieves 42.1% higher
AUC than Hoeffding Tree on average.

Compared with the method without imbalance handling.
OMR is not designed for imbalance case either, so it fails to
generate meaningful output when the data is highly imbal-
anced, just like Hoeffding tree. Only on the relative balanced
projects like capybara and killbill, OMR can learn a reason-
able model, but the performance is still poor. SOLA achieves

Online Methods Batch Method

Methods Hoeffding Tree OMR SOLAM SOLA SAMULT
— Semi. AUC-Opt. AUC-Opt./Semi. AUC-Opt./Semi.

deeplearning4j 0.429 0.500† 0.832 0.832 0.848
capybara 0.612 0.604 0.718 0.727 0.658
killbill 0.692 0.686 0.688 0.688 0.710
rails 0.531 0.529 0.611 0.616 0.627
codetriage 0.640 0.495 0.648 0.707 0.704
oryx 0.500† 0.500† 0.665 0.737 0.757
phony 0.500† 0.500† 0.808 0.980 0.979
stringer 0.500† 0.500† 0.954 0.975 0.975

Average 0.551 0.539 0.741 0.783 0.782

Table 3: Average AUC of compared methods on different projects. The boldfaces denote the best or comparable methods on each dataset,
according to pairwise t-test at the significance level 5%. The daggers (†) denote the methods that fail to output any meaningful predictions
by classifying all instances into one class or assigning them with a same score.

45.3% higher AUC than Hoeffding Tree on average. Com-
paring OMR and Hoeffding Tree to SOLA, we can conclude
that AUC optimization is crucial for learning models from
imbalanced data.

Compared with the method without exploiting unlabeled
data. Since SOLAM handles imbalance by optimizing
AUC, it can learn meaningful models in all the projects.
SOLA outperforms SOLAM in most of the case due to the
unlabeled data. Note that SOLAM achieves comparable per-
formance to SOLA on deeplearning4j, killbill, and rails, the
reason might be there are enough labeled data for learning
the model. However, by exploiting the unlabeled data, SOLA
achieves 5.7% improvement than SOLAM on average.

Compared with the batch method. SAMULT is a batch
method, which can be regarded as a upper bound of proposed
online method. As shown in Table 3, SOLA achieves simi-
lar performance to SAMULT, which means that SOLA learns
well from sequential data by just processing each instance
once. However, by leveraging an online updating algorithm,
the running time of SOLA is significantly reduced, which is
discussed in the next subsection.

In summary, the experimental results show that SOLA out-
performs the existing online method by handling imbalanced
data, learning suspiciousness of the events, and exploit the
unlabeled data. SOLA also saves significant amount of time
by using an online algorithm. Such results suggest that ad-
dressing four challenges simultaneously in CI build outcome
prediction is beneficial.

4.4 Running Time
To study the running time reduced by adapting the semi-
supervised AUC optimization method into an online situa-
tion, we evaluate the running time of SOLA and other com-
petitive methods. We update the model every time a new in-
stance arrives, and measure the time of model updating. The

0.0% 2.5% 5.0% 7.5% 10.0% 12.5% 15.0%

Hoeffding
Tree

OMR

SOLAM

Sola

Figure 2: Average relative model updating time of the online models
w.r.t. the batch method, SAMULT, on rails dataset.

updating process is repeated 100 times to eliminates the im-
pact of the randomness. We record the average relative model
updating time of each method w.r.t. the batch method, SA-
MULT, to show how much time is saved by formulating the
continuous build outcome prediction as an online problem.
Due to the space limitation, we only report the results on the
largest dataset, rails, in Figure 2. Similar trends can be find
on the other datasets.

It can be observed in Figure 2 that SOLA saves more than
97% of the time during model updating, compared with the
batch method SAMULT. Only SOLAM achieves a slightly
better time consumption than SOLA, since SOLAM simply
dismisses the unlabeled data while SOLA uses them to update
the model. By adopting an online algorithm, much time for
model updating is saved.

4.5 Threats to Validity
We have only evaluated our method on open-source projects,
and only 8 projects are used. Evaluation on more projects,
including closed-source projects may lead to more reliable
results. Also, the projects are all Java projects. In the future,
we plan to reduce these threats by experimenting on more
software projects.

5 Conclusion
Continuous build outcome prediction can be applied to cut
the effort in Continuous Integration. In this paper, we ar-

gue that four challenges, including streaming data, few build
outcome label, imbalance in build outcomes, and suspicious-
ness of build event required, should be properly handled. We
propose SOLA, a semi-supervised online AUC optimization
method, to address the continuous build outcome prediction
problem by handling the four challenges simultaneously. Ex-
periments show that SOLA can reduce the building efforts by
accurately identifying the successful and failed builds, and
outperforms the existing methods in terms of performance
and running time.

It is worth mentioning that SOLA is not closely coupled
with the features used in this paper. By using a better group of
features or features learned by deep models, the performance
may be further improved, which may be further explored in
the future. Besides, SOLA may be adapted to other tasks with
similar settings, such as just-in-time defect prediction.

References
[Amini et al., 2008] Massih Reza Amini, Tuong Vinh

Truong, and Cyril Goutte. A boosting algorithm for learn-
ing bipartite ranking functions with partially labeled data.
In Proceedings of the Thirty-First Annual International
ACM SIGIR Conference on Research and Development in
Information Retrieval, pages 99–106, 2008.

[Booch, 1991] Grady Booch. Object Oriented Design with
Applications. Benjamin-Cummings Publishing Co., Inc.,
Redwood City, California, 1991.

[Campos et al., 2014] José Campos, Andrea Arcuri, Gordon
Fraser, and Rui Abreu. Continuous test generation: En-
hancing continuous integration with automated test gener-
ation. In Proceedings of the Twenty-Ninth ACM/IEEE In-
ternational Conference on Automated Software Engineer-
ing, pages 55–66, New York, New York, 2014.

[Duvall et al., 2007] Paul Duvall, Stephen M. Matyas, and
Andrew Glover. Continuous Integration: Improving Soft-
ware Quality and Reducing Risk. Addison-Wesley Profes-
sional, 2007.

[Finlay et al., 2014] Jacqui Finlay, Russel Pears, and
Andy M. Connor. Data stream mining for predicting
software build outcomes using source code metrics.
Information and Software Technology, 56(2):183 – 198,
2014.

[Fujino and Ueda, 2016] Akinori Fujino and Naonori Ueda.
A semi-supervised AUC optimization method with gener-
ative models. In IEEE Sixteenth International Conference
on Data Mining, pages 883–888, 2016.

[Gao and Zhou, 2015] Wei Gao and Zhi-Hua Zhou. On the
consistency of AUC pairwise optimization. In Proceed-
ings of the Twenty-Fourth International Joint Conference
on Artificial Intelligence, pages 939–945, 2015.

[Gao et al., 2013] Wei Gao, Rong Jin, Shenghuo Zhu, and
Zhi-Hua Zhou. One-pass AUC optimization. In Proceed-
ings of the Thirtieth International Conference on Machine
Learning, volume 28, pages 906–914, 2013.

[Goldberg et al., 2008] Andrew B. Goldberg, Ming Li, and
Xiaojin Zhu. Online manifold regularization: A new learn-
ing setting and empirical study. In Machine Learning
and Knowledge Discovery in Databases, pages 393–407,
Berlin, Heidelberg, 2008.

[Hassan and Zhang, 2006] Ahmed E. Hassan and Ken
Zhang. Using decision trees to predict the certifica-
tion result of a build. In Proceedings of the Twenty-
First IEEE/ACM International Conference on Automated
Software Engineering, pages 189–198, Washington, DC,
2006.

[Hilton et al., 2016] Michael Hilton, Timothy Tunnell, Kai
Huang, Darko Marinov, and Danny Dig. Usage, costs, and
benefits of continuous integration in open-source projects.
In Proceedings of the Thiry-First IEEE/ACM International
Conference on Automated Software Engineering, pages
426–437, New York, New York, 2016.

[Kamei et al., 2016] Yasutaka Kamei, Takafumi Fukushima,
Shane McIntosh, Kazuhiro Yamashita, Naoyasu Ubayashi,
and Ahmed E. Hassan. Studying just-in-time defect pre-
diction using cross-project models. Empirical Software
Engineering, 21(5):2072–2106, 2016.

[Madeyski and Kawalerowicz, 2017] Lech Madeyski and
Marcin Kawalerowicz. Continuous defect prediction: The
idea and a related dataset. In Proceedings of the Fourteenth
International Conference on Mining Software Reposito-
ries, pages 515–518, Piscataway, New Jersey, 2017.

[Ni and Li, 2017] Ansong Ni and Ming Li. Cost-effective
build outcome prediction using cascaded classifiers. In
Proceedings of the Fourteenth International Conference
on Mining Software Repositories, pages 455–458, Piscat-
away, New Jersey, 2017.

[Sakai et al., 2018] Tomoya Sakai, Gang Niu, and Masashi
Sugiyama. Semi-supervised AUC optimization based
on positive-unlabeled learning. Machine Learning,
107(4):767–794, 2018.

[Xie and Li, 2018] Zheng Xie and Ming Li. Semi-supervised
AUC optimization without guessing labels of unlabeled
data. In Proceedings of the Thirty-Second AAAI Confer-
ence on Artificial Intelligence, 2018.

[Yang et al., 2017] Xinli Yang, David Lo, Xin Xia, and Jian-
ling Sun. TLEL: A two-layer ensemble learning approach
for just-in-time defect prediction. Information and Soft-
ware Technology, 87:206 – 220, 2017.

[Ying et al., 2016] Yiming Ying, Longyin Wen, and Siwei
Lyu. Stochastic online AUC maximization. In Advances
in Neural Information Processing Systems 29, pages 451–
459. Curran Associates, Inc., 2016.

[Zhao et al., 2011] Peilin Zhao, Steven C. H. Hoi, Rong Jin,
and Tianbao Yang. Online AUC maximization. In Pro-
ceedings of the Twenty-Eighth International Conference
on International Conference on Machine Learning, pages
233–240, 2011.

