
Ambiguity-Aware Abductive Learning

Hao-Yuan He 1 2 Hui Sun 1 2 Zheng Xie 1 Ming Li 1 2

Abstract
Abductive Learning (ABL) is a promising frame-
work for integrating sub-symbolic perception and
logical reasoning through abduction. In this case,
the abduction process provides supervision for
the perception model from the background knowl-
edge. Nevertheless, this process naturally con-
tains uncertainty, since the knowledge base may
be satisfied by numerous potential candidates.
This implies that the result of the abduction pro-
cess, i.e., a set of candidates, is ambiguous; both
correct and incorrect candidates are mixed in this
set. The prior art of Abductive Learning selects
the candidate that has the minimal inconsistency
of the knowledge base. However, this method
overlooks the ambiguity in the abduction process
and is prone to error when it fails to identify the
correct candidates. To address this, we propose
Ambiguity-Aware Abductive Learning (A3BL),
which evaluates all potential candidates and their
probabilities, thus preventing the model from
falling into sub-optimal solutions. Both exper-
imental results and theoretical analyses prove that
A3BL markedly enhances ABL by efficiently ex-
ploiting the ambiguous abduced supervision.

1. Introduction
Currently, machine learning methods are achieving signifi-
cant success in perception (Krizhevsky et al., 2012; Vaswani
et al., 2017). However, real-world learning tasks usually
require not only the perception ability but also the logi-
cal reasoning ability (Kahneman, 2011). To address the
limitations of current machine learning methods, the next
generation of Artificial Intelligence calls for the integra-
tion of data-driven machine learning and knowledge-driven
symbolic reasoning (Zhou, 2019).

1National Key Laboratory for Novel Software Technology, Nan-
jing University, Nanjing, China 2School of Artificial Intelligence,
Nanjing University, Nanjing, China. Correspondence to: Ming Li
<lim@lamda.nju.edu.cn>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

Abductive Learning (ABL) (Zhou, 2019; Dai et al., 2019)
represents a novel framework seamlessly integrating ma-
chine learning systems with logical reasoning systems.
Within this framework, the machine learning model is
trained to transform raw input data, e.g., images and text,
into sub-symbolic concepts; concurrently, the logical model
is designed to conduct reasoning based on these concepts.
Logical reasoning, facilitated through abductive reason-
ing (Magnani, 2009), is employed to identify the accurate
concepts of unlabeled instances; these identified concepts
are then utilized to update the machine learning model
through supervised learning.

Consider the following illustrative example: the digit equa-
tion SUM( , ) = 3 is presented, accompanied by the
background knowledge that it represents a digit addition
task. Initially, the machine learning model identifies = 1

and = 1. However, upon logical inference, it is deduced
that 1+ 1 ̸= 3. Nonetheless, a plausible explanation is
proposed: = 1, = 2, aligning with the background
knowledge and thereby validating the equation.

Although the above procedure seems feasible, ambiguity
still persists. The term ambiguity in this context means
that the abduction process yields not only the correct result
but also other validate candidates (Magnani, 2009), such
as [ = 0, = 3], · · · , [ = 3, = 0], which are rea-
sonable hypotheses given the existing background knowl-
edge. The use of such ambiguous supervision derived from
abductive reasoning brings significant challenges to model
training processes. To address this issue, prior studies (Dai
et al., 2019) have selected the nearest candidate (e.g., in
terms of Hamming distance) to the model’s prediction as
pseudo-labels for learning. In this case, the accurate identifi-
cation of candidates depends heavily on the performance of
the perception model. When training the perception model
from scratch, the initial recognitions are often unreliable,
which means that the closest candidate of the abduction
results may not be the correct one. Further training on these
selected candidates as supervision data may lead to the per-
ception model becoming entrapped in a sub-optimal state.
Therefore, it still remains a challenge to properly utilize the
ambiguity of abduction candidates in the ABL framework.

To address the ambiguity in the abduction results, this pa-
per introduces the concept of Ambiguity-Aware Abductive

1



Ambiguity-Aware Abductive Learning

Learning, abbreviated as A3BL. Rather than considering a
single candidate at once, this work focuses on assessing all
potential abduction candidates. Specifically, A3BL employs
an Expectation-Maximization (EM) algorithm for optimiza-
tion purposes. Initially, A3BL assigns a weight to each
candidate, derived from the machine learning model. Utiliz-
ing these weights, A3BL converts the ambiguous outcomes
of abductive reasoning into instance-level class probability
distributions. Then A3BL utilizes a uniquely formulated
ambiguity-aware abductive loss function. Following the op-
timization of this loss function, the machine learning model
updates the weight of each candidate, thereby revising the
instance-level probability distribution for subsequent opti-
mization steps. Through the iterative optimization of the EM
algorithm, which guarantees convergence, A3BL effectively
maximize the consistency between the perception model
and the knowledge base. Both experimental outcomes and
theoretical analyses substantiate that our approach signifi-
cantly enhances ABL by efficiently leveraging ambiguous
abduced supervision.

The contributions of this study are outlined as follows:

• Identification and articulation of the ambiguity issue
within the ABL framework, a challenge that stems from
the inherent ambiguity in the abduction process.

• Proposal of A3BL as a novel solution to mitigate this is-
sue, accompanied by a comprehensive theoretical analysis
with the establishment of an error bound to substantiate
the effectiveness of A3BL.

• Empirical studies present the superior performance of the
proposed method A3BL.

The remainder of this paper is organized as follows: Sec-
tion 2 introduces the majority of the related works pertinent
to this paper. Then, Section 3 presents the preliminaries and
the proposed method A3BL, including the theoretical analy-
sis. After that, Section 4 details empirical studies conducted
to support our claims and verify the performance of A3BL.
Finally, Section 5 provides the conclusion and additional
discussion of this paper.

2. Related Works
Neuro-Symbolic Learning Researchers have made at-
tempts to combine neural networks and symbolic reasoning
in order to achieve a more comprehensive form of Artificial
Intelligence several decades ago (Towell & Shavlik, 1994;
Sun, 1994; Garcez et al., 2002). Pioneering efforts have
been made to convert logic rules into loss functions, such as
the development of Semantic Loss (Xu et al., 2018). This
approach utilizes probabilistic logic to transform logic rules
into loss functions. Another notable method is Semantic-
Based Regularization (Roychowdhury et al., 2021), which

employs fuzzy logic to achieve the transformation of logic
rules into loss functions. However, approximating logical
reasoning cannot replace a true logical engine, and problems
may arise when attempting to approximate discrete logical
calculations (van Krieken et al., 2022; He et al., 2024). Re-
cently, there have been advancements in this area by em-
ploying hybrid-system, including DeepProbLog (Manhaeve
et al., 2018; 2021), which integrates deep neural networks
with problog (De Raedt et al., 2007) using a probabilistic
logic approach. Another approach is NeurASP (Yang et al.,
2020), which is similar to DeepProbLog but employs An-
swer Set Programming (ASP) (Dimopoulos et al., 1997)
instead of problog. Additionally, DeepStochLog (Winters
et al., 2022) is a related approach to DeepProbLog, but it
enhances computation speed by utilizing a stochastic logic
approach.

Abductive Learning Abduction (Magnani, 2009) refers
to the process of selectively inferring certain facts and hy-
potheses that explain phenomena and observations based
on background knowledge. It has been a recurring topic of
interest in the field of AI, as attempts have been made to
integrate it with symbolic induction (Muggleton & Bryant,
2000; Mooney, 2000). Abductive Learning (ABL) (Dai
et al., 2019; Zhou, 2019) aims to leverage learning and ab-
duction in a mutually beneficial loop, presenting a novel
paradigm for integrating machine learning and logical rea-
soning within a unified framework. The ABL framework is
renowned for its expressive and flexible nature, as it can be
applied to both labeled and unlabeled data with an appro-
priate knowledge base. Dai & Muggleton (2021) enhance
the ABL framework’s ability to induce knowledge from
the raw data, the optimization builds upon the EM algo-
rithm. Furthermore, ABL has been applied in various prac-
tical tasks, including theft judicial sentencing (Huang et al.,
2020), stroke evaluation (Wang et al., 2021), optical charac-
ter recognition (Cai et al., 2021), and historical document
segmentation and recognition (Gao et al., 2024). Recently,
Huang et al. (2024) released an open library for ABL, which
is easy to use. Yang et al. (2024) worked on scenarios where
the given knowledge base does not fit well with the ground-
truth background knowledge. Despite its achievements in
multiple applications, ABL still faces the challenge of the
cold-start problem (Tao et al., 2024). This problem arises
when it becomes difficult to abduce the correct candidate,
particularly when the machine learning model is trained
from scratch. This ambiguity stems from the the abduc-
tion process (Magnani, 2009), especially during the initial
learning phase of the learning model.

Weakly Supervised Learning Our method draws inspira-
tion from commonly employed weighting techniques in the
field of weakly supervised learning (WSL) (Zhou, 2017).
WSL aims to learn from imperfect supervision, which en-

2



Ambiguity-Aware Abductive Learning

compasses various approaches such as learning from noisy
labels (Natarajan et al., 2013), multi-instance learning (Di-
etterich et al., 1997), multi-label learning (Zhang & Zhou,
2014), and partial label learning (Cour et al., 2011). WSL
has also achieved considerable success in other applications,
such as natural language process (Artzi & Zettlemoyer,
2013); object detection (Zhang et al., 2022); AUC opti-
mization (Xie et al., 2024); and so on. The ABL framework
can be viewed as expanding the domain of WSL (Zhou &
Huang, 2022), where the supervision information can come
from knowledge reasoning. Within the ABL framework, it
is possible to get an effective model even when there is an
insufficient amount of labeled or unlabeled data, as long as
high-quality knowledge is available. Recently, Wang et al.
(2023) investigated a typical case of neuro-symbolic system,
from a multi-instance weak supervision perspective. Tao
et al. (2024) analyzed the cold-start problem of ABL by
adopting a perspective rooted in noisy-label learning. Both
of these works focused on the theoretical aspects of the field
without proposing any specific algorithms. Distinguishing
itself from previous studies, our work specifically focuses
on the ambiguity of abduction within the ABL framework.
A3BL extend the ABL by enhancing stable training and pro-
moting fast convergence, while also providing a promising
theoretical analysis.

3. Ambiguity-Aware Abductive Learning
In this section, we begin by introducing the preliminaries of
the problem setting. Subsequently, we discuss the optimiza-
tion objectives of the previous ABL methods and examine
their limitations. Following this, we presented the primary
contributions of this paper, namely the Ambiguity-Aware
Abductive Learning method, short for A3BL. Finally, we
provide a theoretical analysis of A3BL, establishing an error
bound and drawing connections between our optimization
process and the Expectation-Maximization (EM) algorithm.
To the best of our knowledge, this is the first attempt to
provide an error bound analysis within the ABL framework.

3.1. Problem Setting

This study follows the common setting of the ABL. The
ABL framework consists of a perception model and a rea-
soning model, e.g., a knowledge base. The perception
model, denoted as f : X 7→ Z , maps an instance x
from the input space X to a label z in the symbol space
Z = {1, · · · , L}. The knowledge base, denoted as KB, is
comprised of rules defined over a sequence of instances
x = (x1, · · · , xm) ∈ Xm, where m denotes the sequence
length. The corresponding labels of the instance sequence
are denoted by z = (z1, · · · , zm) ∈ Zm. To clarify, in
some cases, f may represent a mapping from X to a dis-
tribution over Z . Additionally, when f processes a se-

quence input x, it correspondingly outputs a sequence.
Though not knowing the sequence of labels z of x, we
have some indirect information y ∈ Y , the target label,
such that z ∧ KB |= y. If the target label is determined
by z given the knowledge base KB, this process can be re-
ferred as a logical forward function σ(·), indicating that
σ(z) = y. The overall training set with N sequences
can be denoted as (X̂m, Ŷ), which is drawn from the dis-
tribution (Xm,Y). Here, X̂m = {x(1), · · · ,x(N)}, and
Ŷ = {y(1), · · · , y(N)}.
In a typical Abductive Learning process, the machine learn-
ing model can not access the sequence labels z during train-
ing, but it can access the knowledge base for abductive rea-
soning. When provided with the input x, the model outputs
z̃ = (z̃1, · · · , z̃m). If the prediction z̃ with the knowledge
base KB entails a wrong target label ỹ ̸= y, the resaoner
immediately knows that z̃ is incorrect. Following the abduc-
tion process, the resaoner could restrict the possible concept
sequence z within a candidate set s ⊆ Zm. We provide
an example below to facilitate a better understanding of the
notations mentioned above.

Example 3.1. The input data x = (x1, x2) ∈ X 2, where
X is a digit image space (e.g., MNIST). Symbol space Z =
{0, 1, · · · , 9}, target label space Y = {0, 1, · · · , 18}. The
logical forward function σ(·, ·) : X 2 7→ Y = Sum(·, ·). If
target label y = 2 and the logical forward result σ(z̃) ̸= 2,
then the knowledge base will abduce candidate set s =
{(0, 2), (1, 1), (2, 0)}.

The learning system of ABL is designed for the perception
tasks. In this study, we specifically focus on the classifi-
cation task, which involves minimizing the risk associated
with classification errors. For convenience, we can equiva-
lently rewrite the risk at the sequence level as follows:

Definition 3.1 (Classification risk). The objective of multi-
class classification is to train a multi-class classifier that
minimizes the classification risk defined as follows:

R(f ;L) = Ep(x,z)[L(f(x), z)]. (1)

Here, the loss function L(·, ·) represents the aggregation
of classification errors for each instance in the sequence x.
Mathematically, it can be expressed as:

Ep(x,z)

[
1

m

m∑
i=1

Lcls(f(xi), zi)

]
, (2)

where Lcls typically denotes a classification loss function.

3.2. Previous Abductive Learning

To minimize the aforementioned classification risk, prior
Abductive Learning methods basically solve an empirical

3



Ambiguity-Aware Abductive Learning

risk minimization problem which can be formalized as:

min
f∈F

1

N

N∑
i=1

L(f(x(i)), z(i))

s.t. z(i) = arg min
c∈s(i)

Score(c, f(x(i))), i ∈ [N ],

(3)

where s(i) is the abduced candidate set of f(x(i)), that is to
say s(i) = {c|c ∧ KB |= y(i)}. The term Score(c, f(x(i)))
is used to quantify how likely the candidate c is incorrect
based on the model’s prediction f(x(i)).

To implement this function, different measures can be
used. For instance, Dai et al. (2019) use the Hamming
distance (Hamming, 1950) as the score function:

Score(c, f(x(i))) = Hamming(c, f(x(i))). (4)

This scoring function tries to use the candidate c∗ that has
most of the same labels as the prediction f(x(i)). Addi-
tionally, it is feasible to extend this approach to include the
confidence provided by the model’s prediction. This exten-
sion is implemented in the official package1 as follows:

Score(c, f(x(i))) = 1−
m∏
j=1

f(x(i))cj . (5)

In this context, f(·) represents the model’s predicted dis-
tribution over Z . Additionally, f(x(i))cj is the model’s
estimated probability of the class cj given the input x(i)

j .

3.3. Ambiguity-Aware Abductive Loss

As discussed above, the abductive reasoning process can-
not eliminate all incorrect predictions, hence the candidate
set cannot be used as an accurate supervision. Previous
research attempts to select one assignment of the sequence
labels with minimal difference to the predictions (Equa-
tion 4) or the maximal probability according to the model’s
confidence (Equation 5). However, the selected assignment
is prone to error and could lead the model astray. To pre-
vent this from happening, such methods have to require a
number of instance-level supervision, i.e., Semi-Supervised
Abductive Learning (Huang et al., 2020) or assume an ini-
tial model performance, i.e., pretrain the model (Dai et al.,
2019). Such requirements further limit the application of
the methods. The root cause of the learner being trapped
in an incorrect situation stems from the ambiguity of the
abduced result: once the model selects an incorrect label to
learn, its incorrect perception can be strengthened in the sub-
sequent training process, leading to a vicious cycle. Thus, it
is critical to be aware that any possible candidate could be
the correct one.

1https://github.com/AbductiveLearning/ABLKit

To achieve this, we propose Ambiguity-Aware Abductive
Learning, or A3BL for short. A3BL initially transforms
the ambiguous abduction results into instance-level class
probability distributions. Subsequently, it utilizes a novel
ambiguity-aware abductive loss to enable the model to
learn classification from these class probability distributions.
By doing this, A3BL can fully leverage the ambiguous
abductive results to facilitate learning.

Suppose the model predicts the labels of an instance se-
quence x = (x1, · · · , xm) to be z̃ = (z̃1, · · · , z̃m).
Through abductive reasoning, it is realized that the can-
didate set of potentially correct label sequences should be
s = {ci|ci∧KB |= y}. The probability of a candidate label
sequence to be true can be formalized as:

p(z = ci|x) =
∏

1≤j≤m

p(zj = cij |xj) . (6)

Due to the fact that all impossible label sequences are ruled
out by the abduction, the posterior probability of a candidate
label sequence ci to be all correct, given the candidate set s,
can be obtained by:

p(z = ci|x, s) =
p(z = ci|x)∑
c∈s p(z = c|x) . (7)

Then, for an instance xj appeared in the sequence x, its
probability of being k-th class should be:

p(z = k|xj , s) =
∑
ci∈s

I[k = cij ]p(z = ci|x, s) . (8)

By this equation, we obtain the class probability distribution
of any instance xj that occurred in the sequence x, which
can be used as a supervision for the model training.

The next key step is to train a classifier based on the class dis-
tribution p(z|x, s) = [p(z = 1|x, s), · · · , p(z = L|x, s)]⊤.
To make the model learn from this ambiguous supervision,
we minimize the difference between the model’s output and
the probability distribution:

1

m ·N
N∑
i=1

m∑
j=1

Lcls

(
f(x

(i)
j ), p(z|x(i)

j , s(i))
)
, (9)

where the Lcls is the cross entropy loss. Here we denote s(i)

as the candidate set abduced from x(i). In fact, the above
optimization object is equivalent to the empirical risk below:

1

N

N∑
i=1

∑
c∈s(i)

p(c|x(i), s(i)) · L(f(x(i)), c). (10)

The term p(c|x(i), s(i)) is provided by the perception model
f . This term represents the weight assigned to candidate

4

https://github.com/AbductiveLearning/ABLKit


Ambiguity-Aware Abductive Learning

c, considering the candidate set s(i) and the sequence x(i).
The equivalence of the above two equations can be easily
validated by expanding both of them, and the proof can
be seen in Appendix A. We name Equation (10) as R̂A3 ,
representing empirical ambiguity-aware abductive risk. By
optimizing this risk, each potential candidate is evaluated
with distinct weights, enabling A3BL to more effectively
utilize ambiguous abduction results.

3.4. Theoretical Analysis

In this section, we provide a theoretical analysis of A3BL.
Initially, we demonstrate that optimizing Equation (10) can
be interpreted as a process of maximizing the log-likelihood∑N

i=1 log pθ(x
(i), y(i)), via the Expectation-Maximization

(EM) algorithm (Dempster et al., 1977), where θ denotes
the parameters to be optimized. Additionally, we present an
estimation error bound for Equation (10). Detailed proofs
are available in Appendix A.

Theorem 3.2. The optimization of Equation (10) is actually
optimizing the log-likelihood

∑N
i=1 log pθ(x

(i), y(i)), via
the EM algorithm.

Proof Sketch. For simplicity, consider a single sample(
x(i), y(i)

)
. By Jensen’s inequality, the log-likelihood

log p(x(i), y(i)) is lower bounded by:

log pθ(x
(i), y(i)) ≥

∑
c∈s(i)

wc log(
pθ(x

(i), c)

wc
), (11)

where the wc ∈ [0, 1] and
∑

c∈s(i) wc = 1 is a coefficient.
The equality holds when

∀ck, cj ∈ s(i),
pθ(x

(i), ck)

wck

=
pθ(x

(i), cj)

wcj

. (12)

It turns out that this equality holds when wc = p(z =
c|x(i), s(i)). Thus, the E-step corresponds to setting wc =
p(z = c|x(i), s(i)), and then the M-step involves optimiz-
ing the ambiguity-aware abductive risk.

The log-likelihood
∑N

i=1 log pθ(x
(i), y(i)) quantifies the

consistency between the model’s predictions and the un-
derlying knowledge base. In this context, optimizing Equa-
tion (10) is to maximize the consistency between the ma-
chine learning model and the knowledge base. Next, we will
establish an estimation error bound to analyze the difference
between the estimation error of f̂A3 and the optimal classi-
fier f⋆. Here, f⋆ is defined as the classifier that minimizes
the risk R(f) over the function space F , while f̂A3 is the
empirical risk minimizer of R̂A3(f) over the same function
space F . To accomplish this, we need to define a class of
real functions Fi (Maurer, 2016), and then F = ⊕i∈[K]Fi

represents the K-valued function space, where K = Lm.

Thus, it can be observed that as m increases, the complexity
of the learning task increases too.

Theorem 3.3 (Error bound). Suppose that L(f(x), z) is
ρ-Lipschitz with respect to f(x) for all z ∈ Zm and upper-
bounded by M = supf∈F,x∈Xm,z∈Zm L(f(x), z). Let
Rn(Fi) be the Rademacher complexity of Fi with sample
size n. Then for any δ > 0, with probability at least 1− δ,

R(f̂A3)−R(f⋆) ≤ 4
√
2ρ

K∑
i=1

Rn(Fi) + 2M

√
log (2/δ)

2n
.

(13)

As n→∞, it follows that Rn(Fi)→ 0 for all parametric
models with a bounded norm, such as deep networks trained
with weight decay (Lu et al., 2019). Therefore, Theorem 3.3
demonstrates that f̂A3 converges to f⋆ as the number of
training data tends to infinity, indicating that the learning
process is consistent in an asymptotic sense.

4. Empirical Study
In this section, we conduct experiments to verify our claims
and validate the superior performance of A3BL. Specifically,
the experiments focus on two challenging tasks in the neuro-
symbolic field: Digit Addition and Handwritten Formula
Recognition. To ensure reproducibility, all experiments are
repeated five times, each with a different random seed. The
same backbone is used for all baselines; for further details,
please refer to the appendix.

4.1. Settings of Digit Addition

Manhaeve et al. (2018) proposed the Digit Addition task,
which is based on standard addition rules. The training
data for this task is presented in the form SUM( , ) = 3.
Building upon this concept, we have expanded the task to
incorporate four distinct datasets: MNIST (Deng, 2012),
KMNIST (Clanuwat et al., 2018), CIFAR10 (Krizhevsky,
2009), and SVHN (Netzer et al., 2011). Each dataset con-
sists of 10 classes, with the class indices representing digits
from 0 to 9. In line with the work of Winters et al. (2022), to
increase the task’s complexity, we have extended the range
of digit-size n from 1 to 4, e.g., SUM( , ) = 33.
When the size of the digits increases, the size of the abduced
candidates set correspondingly expands, and so does the
complexity of the background knowledge.

Compared Methods We conducted a comparative anal-
ysis of our method by contrasting it with several promi-
nent hybrid system approaches. These methods include
DeepProbLog (Manhaeve et al., 2021), which integrates
deep neural networks with ProbLog (De Raedt et al.,
2007) through a probabilistic logic framework. Another
noteworthy method is NeurASP (Yang et al., 2020), akin

5



Ambiguity-Aware Abductive Learning

0 10 20 30 40 50

0.0

0.2

0.4

0.6

0.8

n=1

0 10 20 30 40 50

n=2

0 10 20 30 40 50

n=3

0 10 20 30 40 50

n=4

0 10 20 30 40 50

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
n=1

0 10 20 30 40 50

n=2

0 10 20 30 40 50

n=3

0 10 20 30 40 50

n=4

A3BL ABL-hamming ABL-conf Deepstochlog Deepproblog NeurASP

(a) Addition-SVHN

0 10 20 30 40 50

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
n=1

0 10 20 30 40 50

n=2

0 10 20 30 40 50

n=3

0 10 20 30 40 50

n=4

A3BL ABL-hamming ABL-conf Deepstochlog Deepproblog NeurASP

(b) Addition-CIFAR10

Figure 1. Performance curves (accuracy vs. epochs) of compared methods on digit addition tasks. The shaded area represents the standard
error of the methods over 5 repetitions. Cross marks denote experiments that were not finished within 48 hours.

0 10 20 30 40 50

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

HWF-CIFAR

0 10 20 30 40 50

0.0

0.2

0.4

0.6

0.8

HWF-SVHN

0 10 20 30 40 50

0.0

0.2

0.4

0.6

0.8

1.0

HWF

A3BL ABL-hamming ABL-conf Deepstochlog Deepproblog NGS-BS NGS-RL NGS-MAPO

0 10 20 30 40 50

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

HWF-CIFAR

0 10 20 30 40 50

0.0

0.2

0.4

0.6

0.8

HWF-SVHN

0 10 20 30 40 50

0.0

0.2

0.4

0.6

0.8

1.0

HWF

A3BL ABL-hamming ABL-conf Deepstochlog Deepproblog NGS-BS NGS-RL NGS-MAPO

Figure 2. Performance curves (accuracy vs. epochs) of compared methods on handwritten formula recognition tasks. The shaded area
represents the standard error of the methods over 5 repetitions. Cross marks denote experiments that were not finished within 48 hours.

to DeepProbLog but leveraging answer set programming
(ASP) (Dimopoulos et al., 1997) in place of ProbLog. Deep-
StochLog (Winters et al., 2022) represents a related strat-
egy to DeepProbLog, distinguishing itself by enhancing
computational speed via a stochastic logic methodology.
Additionally, our analysis encompassed various implemen-
tations of ABL. The ABL version utilizing the score func-
tion Equation (4) was referred to as ABL-hamming, and

the one employing Equation (5) was termed ABL-conf. In
our experimental setup, all methods utilize a consistent per-
ception model for fairness in comparison. For the MNIST
and KMNIST datasets, the selected perception model is
LeNet (LeCun & Bengio, 1998). For the CIFAR10 and
SVHN datasets, we employ ResNet50 (He et al., 2016). All
these perception models are trained from scratch, and all
compared methods were evaluated based on their official

6



Ambiguity-Aware Abductive Learning

implementations. The results for the Addition-CIFAR10
and Addition-SVHN tasks are depicted in Figure 1. Owing
to space limitations, the results for the Addition-MNIST and
Addition-KMNIST tasks are provided in Appendix C.

4.2. Settings of Handwritten Formula Recognition

Li et al. (2020) introduced the Handwritten Formula Recog-
nition (HWF) task, which is based on the CROHME 2019
Offline Handwritten Formula Recognition Task2. The HWF
dataset, derived from this task, encompasses training data
composed of equations with various lengths and their cor-
responding evaluation results. The equations in the dataset
have lengths in the set {1, 3, 5, 7}. In contrast to prior ap-
proaches, we enhance the task’s difficulty by exclusively
considering equations whose lengths are greater than or
equal to 5. Furthermore, to augment the task’s perceptual
difficulty, we incorporate CIFAR10 (Krizhevsky, 2009) and
SVHN (Netzer et al., 2011), thereby introducing the HWF-
CIFAR and HWF-SVHN variants, respectively.

Compared Methods This study’s selected comparative
methods include the Neural-Grammar-Symbolic model
(NGS) (Li et al., 2020), which adopts an approach akin
to the ABL model by integrating symbolic reasoning with
neural networks. NGS utilizes context-free grammar as its
knowledge base and employs Markov Chain Monte Carlo
(MCMC) sampling for candidate exploration in the solution
space. We implemented various NGS variants as proposed
by Li et al. (2020), including NGS-BS (employing back-
search), NGS-RL (utilizing REINFORCE algorithm), and
NGS-MAPO (with Memory Augmented Policy Optimiza-
tion). Methods including DeepProbLog, DeepStochLog,
ABL-hamming, and ABL-conf were also compared. In
our experiments, all methods utilize a consistent percep-
tion model for fairness in comparison. For the HWF task,
the selected perception model is LeNet (LeCun & Ben-
gio, 1998). For the HWF-CIFAR and HWF-SVHN, we
employ ResNet50 (He et al., 2016). All these perception
models are trained from scratch, and all compared methods
were evaluated based on their official implementations. It
is important to recall that in this study, only equations with
lengths greater than or equal to 5 are considered, a criterion
set to augment the task’s difficulty. Consequently, the results
obtained in this research are expected to differ from those
reported by Li et al. (2020).

4.3. Empirical Analysis

(a) ABL Suffers from Ambiguity The ambiguity of ab-
duction can significantly impair the performance of ABL.
To support this assertion, the following analysis is presented.

2https://www.cs.rit.edu/˜crohme2019/task.html

0 100 200 300

0.0

0.2

0.4

0.6

0.8

1.0

Addition-CIFAR n=3

0 100 200 300

Addition-CIFAR n=4

A3BL ABL-hamming ABL-conf

Figure 3. Abduction process (abduction accuracies vs. steps) of
A3BL and ABL on digit addition tasks. The shaded area represents
the standard error of the methods over 5 repetitions.

• Analysis of Performance Curve. We investigate the perfor-
mance of variants of ABL on two tasks: digit addition and
handwritten formula recognition, as illustrated in Figure 1
and Figure 2, respectively. For the digit addition task,
both ABL-conf and ABL-hamming encounter difficulties
related to the inherent ambiguity in the abduction process.
ABL-hamming, in particular, struggles to converge with
increasing digit size and in complex perception scenar-
ios, such as Addition-SVHN and Addition-CIFAR10. In
contrast, ABL-conf is characterized by a high standard
error, indicating an unstable training process. Similarly,
in the handwritten formula recognition task, these pat-
terns persist. ABL-hamming fails to converge effectively
on the HWF-CIFAR and HWF-SVHN datasets, while
ABL-conf again demonstrates a high standard error, un-
derscoring the instability in its training process. However,
in both tasks, A3BL emerges as significantly superior in
terms of performance. This consistency across different
challenges highlights its robustness and adaptability in
handling complex tasks.

• Analysis of Worst Case. The worst case, i.e., the worst per-
formance run in repeated times. As demonstrated in Fig-
ure 4, the performance curves of A3BL and ABL-conf
exhibit divergent trends. A3BL exhibits consistency be-
tween reasoning and concept accuracy, with both mea-
sures improving over time. Reasoning accuracy refers to
the consistency between the model’s prediction and the
background knowledge, and concept accuracy refers to
the instance-level classification. However, this is not the
case for ABL-conf. In fact, the confusion matrix of ABL-
conf reveals a shortcut pattern. This pattern may slightly
improve the reasoning accuracy, but it negatively impacts
the concept accuracy. This finding clearly highlights that
ABL-conf encounters difficulties in handling ambiguity,
resulting in the adoption of shortcuts.

7

https://www.cs.rit.edu/~crohme2019/task.html
~


Ambiguity-Aware Abductive Learning

0 10 20 30 40 50

0.5

1.0

1.5

2.0

2.5

3.0

×10−1

3.0

4.0

5.0

6.0

7.0

×10−1

Reasoning Accuracy
Concept Accuracy

Predict

Ac
tu

al

0.88 0.01 0.02 0.00 0.02 0.00 0.00 0.01 0.01 0.04

0.01 0.74 0.01 0.09 0.01 0.04 0.03 0.03 0.04 0.00

0.03 0.01 0.90 0.00 0.03 0.01 0.00 0.00 0.00 0.01

0.01 0.11 0.00 0.77 0.01 0.03 0.03 0.04 0.02 0.00

0.02 0.01 0.03 0.00 0.86 0.03 0.01 0.01 0.01 0.01

0.01 0.05 0.01 0.03 0.04 0.78 0.04 0.02 0.03 0.00

0.00 0.04 0.01 0.02 0.01 0.04 0.80 0.04 0.03 0.00

0.01 0.02 0.00 0.03 0.01 0.01 0.03 0.88 0.01 0.00

0.00 0.04 0.00 0.02 0.00 0.02 0.02 0.01 0.88 0.00

0.05 0.01 0.01 0.00 0.03 0.00 0.00 0.00 0.01 0.88

(a) A3BL

0 10 20 30 40 50
0.0

2.0

4.0

6.0

8.0

×10−2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8
×10−1

Reasoning Accuracy
Concept Accuracy

Predict

Ac
tu

al

0.05 0.00 0.74 0.01 0.06 0.01 0.03 0.00 0.00 0.09

0.01 0.04 0.05 0.07 0.01 0.09 0.60 0.01 0.02 0.12

0.56 0.00 0.13 0.01 0.02 0.01 0.02 0.12 0.00 0.13

0.00 0.03 0.05 0.05 0.00 0.01 0.61 0.01 0.15 0.10

0.05 0.01 0.08 0.01 0.03 0.01 0.02 0.01 0.00 0.78

0.01 0.27 0.04 0.07 0.01 0.01 0.12 0.01 0.01 0.45

0.01 0.29 0.05 0.36 0.00 0.01 0.12 0.01 0.02 0.12

0.00 0.03 0.40 0.04 0.00 0.01 0.12 0.00 0.31 0.09

0.00 0.02 0.04 0.52 0.00 0.01 0.12 0.19 0.01 0.09

0.02 0.00 0.11 0.01 0.54 0.14 0.02 0.00 0.00 0.14

(b) ABL-conf

Figure 4. Worst case analysis between A3BL and ABL-conf. The concept accuracy of A3BL increases along with reasoning accuracy,
while the concept accuracy of ABL-conf could worsen as reasoning accuracy increases. Confusion matrices indicate that ABL-conf falls
into a shortcut, i.e., the model mistakenly categorizes instances to enhance reasoning accuracy, while leading to bad concept accuracy.

Table 1. Test accuracies (mean ± standard deviation) on digit addition tasks with varying digit sizes. Each experiment was conducted five
times. The best performance is denoted in boldface. ‘N/A’ indicates that the method failed to complete a single epoch within 48 hours.

Addition-SVHN Addition-CIFAR

Method n = 1 n = 2 n = 3 n = 4 n = 1 n = 2 n = 3 n = 4

NeurASP (Yang et al., 2020) 6.63±0.23 7.84±0.15 7.84±0.15 N/A 10.00±0.00 9.73±0.46 9.73±0.46 N/A
Deepproblog (Manhaeve et al., 2021) 6.53±1.12 N/A N/A N/A 7.55±1.26 N/A N/A N/A
DeepStochLog (Winters et al., 2022) 91.61±0.27 90.81±0.52 90.28±0.35 90.92±0.75 66.32±0.72 67.63±1.45 65.55±0.87 66.38±1.28

ABL-hamming (Dai et al., 2019) 26.56±11.67 19.76±0.14 12.27±9.97 15.88±5.59 31.82±15.71 20.67±3.93 17.29±2.23 12.97±2.60

ABL-conf 91.02±0.95 64.66±43.45 65.12±43.76 65.00±43.97 68.42±1.79 62.94±25.74 58.29±30.19 62.52±26.15

A3BL (Ours) 91.86±0.86 91.81±0.87 92.49±0.37 91.99±0.46 72.82±0.95 76.09±0.18 74.45±0.37 72.57±1.22

(b) Accuracies of Abduction Figure 3 illustrates the ab-
duction processes employed by A3BL, ABL-hamming, and
ABL-conf on digit addition tasks. The process is conducted
over 300 steps, corresponding to 10 epochs. In this context,
abduction accuracy is defined as follows: for ABL-conf and
ABL-hamming, accuracy depends on whether the result of
their abduction process identifies the correct candidate. For
A3BL, accuracy is contingent upon whether the candidate
with the highest weight is indeed the correct one. ABL-
hamming failed to find the correct candidate, and ABL-conf
also struggled with this. However, A3BL effectively distin-
guishes the correct candidate among abduction candidates
through dynamic weight assignment. Within 10 epochs,
the abduction accuracy of A3BL achieves nearly 1, which
brings a clearly supervision for the machine learning model.

(c) Greater Stability and Faster Convergence Exper-
imental results demonstrate that A3BL exceeds the per-
formance of ABL variants, DeepProbLog, DeepStochLog,
NGS variants, and NeurASP, exhibiting faster convergence
and superior performance. In the task of digit addition,
both NeurASP and DeepProbLog underperformed, failing
to surpass a random classifier. Particularly, in certain set-
tings, both methods failed to complete even a single training
epoch within two days; this high computational complexity
limits their applicability in realistic scenarios. In the task
of handwritten formula recognition, all NGS variants failed,

possibly due to the increased difficulty from limiting the
length of equations to five or more. Similarly, DeepProbLog
also failed to complete a training epoch within two days
in this task. As previously discussed, A3BL outperforms
ABL variants in all tasks. To summarize, A3BL beats other
methods in terms of stability and convergence speed.

4.4. Efficiency Discussion

As shown in Theorem 3.2, the E-step in our algorithm can be
computed efficiently, with only one step calculation. In other
words, we use a fixed-form approach to derive this step. For
comparison, the time complexity of the E-step in A3BL is
O(n), where n is the size of the candidate set. However,
the time complexity of ABL to select a candidate is still
O(n), since they have to select the minimal inconsistent
candidate from the set. After that, both ABL and A3BL will
optimize their risk, which is with the same complexity see
Equation (3) and Equation (9). In conclusion, the total time
complexity of A3BL is the same as that of ABL.

Furthermore, we report the execution time for a sample
training session (encompassing 5 epochs) for the Addition-
CIFAR task with n ranging from 1 to 4, see Table 2. The
results were obtained using a computer setup consisting of
an Intel Xeon Platinum 8538 CPU and an NVIDIA A100-
PCIE-40GB GPU on an Ubuntu 20.04 Focal platform.

8



Ambiguity-Aware Abductive Learning

Table 2. Execution time comparison on task Addition-CIFAR.

Method n = 1 n = 2 n = 3 n = 4

ABL 14m 4s 17m 15s 23m 12s 1h 3m 58s
A3BL 14m 5s 19m 42s 27m 20s 1h 8m 49s

5. Conclusions and Future Directions
This study is the first to identify and articulate the issue of
ambiguity within the Abductive Learning (ABL) framework,
a challenge that arises due to the inherent ambiguity in the
abduction process. To mitigate this challenge, we propose
Ambiguity-Aware Abductive Learning (A3BL) as a novel
solution. A3BL diverges from the conventional approach of
selecting a single candidate at once; it considers all potential
candidates, aggregating them into an instance-level class
distribution, which is then optimized using the EM algo-
rithm. This modeling approach enables A3BL to efficiently
utilize ambiguous abduction results, thereby enhancing the
learning system. Furthermore, we establish an error bound,
which guarantees the promising performance of A3BL. Ex-
perimental results demonstrate that A3BL utilizes abduction
results more effectively, achieving a high abduction accu-
racy in the training set within a few iterations. Compared to
other baseline methods, A3BL demonstrates faster conver-
gence, superior stability and better performance.

Although both experimental and theoretical analysis support
the superior performance of A3BL, it may still encounter
failures in some scenarios, e.g., the size of the abduction
candidate set is tremendous. For instance, if the knowledge
base is helpless, the abduction candidate set becomes the
universal set, leading to an overwhelmingly large number
of candidates, which can overburden the learning system.
The challenge may be tackled from two perspectives: The
first is Inductive Logic Programming (ILP), which derives
knowledge from data, thus improving the knowledge base
and subsequently aiding the abduction process. The other
involves developing algorithms to streamline the abduction
process, e.g., parallel abductive reasoning. Also, apply-
ing this framework across a broader spectrum of realistic
scenarios presents a promising avenue.

Impact Statement
This paper introduces Ambiguity-Aware Abductive Learn-
ing (A3BL), a framework enhancing the integration of logi-
cal reasoning with machine learning. The advancement in
A3BL primarily contributes to the efficiency and effective-
ness of neuro-symbolic learning, with broad applicability
in sectors such as healthcare and autonomous systems. We
anticipate that this work will not introduce any negative
ethical or social impacts.

Acknowledgments
This paper is supported by NSFC (62076121, 61921006)
and Major Program (JD) of Hubei Province (2023BAA024).
The authors would like to thank Prof. Wang-Zhou Dai for
his helpful feedback on drafts of the paper.

References
Artzi, Y. and Zettlemoyer, L. Weakly Supervised Learning

of Semantic Parsers for Mapping Instructions to Actions.
Transactions of the Association for Computational Lin-
guistics, 1:49–62, 2013.

Cai, L.-W., Dai, W.-Z., Huang, Y.-X., Li, Y.-F., Muggleton,
S., and Jiang, Y. Abductive Learning with Ground Knowl-
edge Base. In Proceedings of the 30th International Joint
Conference on Artificial Intelligence, pp. 1815–1821, Vir-
tual, 2021.

Clanuwat, T., Bober-Irizar, M., Kitamoto, A., Lamb, A.,
Yamamoto, K., and Ha, D. Deep Learning for Classical
Japanese Literature. CoRR, abs/1812.01718, 2018.

Cour, T., Sapp, B., and Taskar, B. Learning from Partial
Labels. Journal of Machine Learning Research, 12(42):
1501–1536, 2011.

Dai, W.-Z. and Muggleton, S. Abductive Knowledge Induc-
tion from Raw Data. In Proceedings of the 30th Inter-
national Joint Conference on Artificial Intelligence, pp.
1845–1851, Virtual, 2021.

Dai, W.-Z., Xu, Q., Yu, Y., and Zhou, Z.-H. Bridging
Machine Learning and Logical Reasoning By Abductive
Learning. In Advances in Neural Information Process-
ing Systems 32, pp. 2815–2826, Vancouver, BC, Canada,
2019.

De Raedt, L., Kimmig, A., and Toivonen, H. ProbLog:
a Probabilistic Prolog and Its Application in Link Dis-
covery. In Proceedings of the 20th International Joint
Conference on Artifical Intelligence, pp. 2468–2473, Hy-
derabad, India, 2007.

Dempster, A. P., Laird, N. M., and Rubin, D. B. Maximum
Likelihood from Incomplete Data via the EM Algorithm.
Journal of the Royal Statistical Society: Series B, 39:
1–38, 1977.

Deng, L. The MNIST Database of Handwritten Digit Im-
ages for Machine Learning Research. IEEE Signal Pro-
cessing Magazine, 29(6):141–142, 2012.

Dietterich, T. G., Lathrop, R. H., and Lozano-Pérez, T.
Solving the Multiple Instance Problem with Axis-parallel
Rectangles. Artificial Intelligence, 89(1–2):31–71, 1997.

9



Ambiguity-Aware Abductive Learning

Dimopoulos, Y., Nebel, B., and Koehler, J. Encoding Plan-
ning Problems in Nonmonotonic Logic Programs. In
Proceedings of the 4th European Conference on Plan-
ning, pp. 169–181, Toulouse, France, 1997.

Feng, L., Lv, J., Han, B., Xu, M., Niu, G., Geng, X., An,
B., and Sugiyama, M. Provably Consistent Partial-label
Learning. In Advances in Neural Information Processing
Systems 33, pp. 10948–10960, Virtual, 2020.

Gao, E.-H., Huang, Y.-X., Hu, W.-C., Zhu, X.-H., and and,
W.-Z. D. Knowledge-enhanced Historical Document Seg-
mentation and Recognition. In Proceedings of the 38th
AAAI Conference on Artificial Intelligence, Vancouver,
BC, Canada, 2024.

Garcez, A. S. d., Gabbay, D. M., and Broda, K. B. Neural-
Symbolic Learning System: Foundations and Applica-
tions. Springer-Verlag, Berlin, Heidelberg, 2002.

Hamming, R. W. Error Detecting and Error Correcting
Codes. The Bell System Technical Journal, 29(2):147–
160, 1950.

He, H.-Y., Dai, W.-Z., and Li, M. Reduced Implication-
bias Logic Loss for Neuro-symbolic Learning. Machine
Learning, 113:3357–3377, 2024.

He, K., Zhang, X., Ren, S., and Sun, J. Deep Residual
Learning for Image Recognition. In Proceedings of the
2016 IEEE Conference on Computer Vision and Pattern
Recognition, pp. 770–778, Las Vegas, NV, USA, 2016.

Huang, Y.-X., Dai, W.-Z., Yang, J., Cai, L.-W., Cheng, S.,
Huang, R., Li, Y.-F., and Zhou, Z.-H. Semi-supervised
Abductive Learning and Its Application to Theft Judi-
cial Sentencing. In Proceedings of the 20th IEEE Inter-
national Conference on Data Mining, pp. 1070–1075,
Sorrento, Italy, 2020.

Huang, Y.-X., Hu, W.-C., Gao, E.-H., and Jiang, Y. ABLkit:
A Python Toolkit for Abductive Learning. Frontiers of
Computer Science, pp. to appear, 2024.

Kahneman, D. Thinking, Fast and Slow. Farrar, Straus and
Giroux, New York, USA, 2011.

Kingma, D. P. and Ba, J. Adam: A Method for Stochastic
Optimization. In International Conference on Learning
Representations, San Diego, CA, USA, 2015.

Krizhevsky, A. Learning Multiple Layers of Features from
Tiny Images. Technical Report, Department of Computer
Science, University of Toronto, 2009.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet
Classification with Deep Convolutional Neural Networks.
In Advances in Neural Information Processing Systems
25, pp. 1097–1105, Lake Tahoe, Nevada, USA, 2012.

LeCun, Y. and Bengio, Y. Convolutional Networks for
Images, Speech, and Time Series. In The Handbook of
Brain Theory and Neural Networks, pp. 255–258. MIT
Press, Cambridge, MA, USA, 1998.

Li, Q., Huang, S., Hong, Y., Chen, Y., Wu, Y. N., and
Zhu, S.-C. Closed Loop Neural-symbolic Learning via
Integrating Neural Perception, Grammar Parsing, and
Symbolic Reasoning. In Proceedings of the 37th Interna-
tional Conference on Machine Learning, pp. 5884–5894,
Virtual, 2020.

Lu, N., Niu, G., Menon, A. K., and Sugiyama, M. On the
Minimal Supervision for Training Any Binary Classifier
from Only Unlabeled Data. In International Conference
on Learning Representations, New Orleans, LA, USA,
2019.

Magnani, L. Abductive Cognition - The Epistemological and
Eco-Cognitive Dimensions of Hypothetical Reasoning,
volume 3 of Cognitive Systems Monographs. Springer,
Berlin, Heidelberg, 2009.

Manhaeve, R., Dumancic, S., Kimmig, A., Demeester, T.,
and De Raedt, L. DeepProbLog: Neural Probabilistic
Logic Programming. In Advances in Neural Informa-
tion Processing Systems 31, pp. 3753–3763, Montréal,
Canada, 2018.

Manhaeve, R., Dumančić, S., Kimmig, A., Demeester, T.,
and De Raedt, L. Neural Probabilistic Logic Program-
ming in DeepProbLog. Artificial Intelligence, 298(C):
103504, 2021.

Maurer, A. A Vector-contraction Inequality for Rademacher
Complexities. In International Conference on Algorith-
mic Learning Theory, pp. 3–17, Bari, Italy, 2016.

Mohri, M., Rostamizadeh, A., and Talwalkar, A. Founda-
tions of Machine Learning. MIT Press, 2012.

Mooney, R. J. Integrating Abduction and Induction in Ma-
chine Learning. In Abduction and Induction: Essays on
their Relation and Integration, pp. 181–191. Springer
Netherlands, Dordrecht, 2000.

Muggleton, S. H. and Bryant, C. H. Theory Completion
Using Inverse Entailment. In Proceedings of the 10th
Inductive Logic Programming, pp. 130–146, London, UK,
2000.

Natarajan, N., Dhillon, I. S., Ravikumar, P. K., and Tewari,
A. Learning with Noisy Labels. In Advances in Neural
Information Processing Systems 26, pp. 1196–1204, Lake
Tahoe, Nevada, USA, 2013.

10



Ambiguity-Aware Abductive Learning

Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., and
Ng, A. Y. Reading Digits in Natural Images with Unsu-
pervised Feature Learning. In NIPS Workshop on Deep
Learning and Unsupervised Feature Learning, Granada,
Spain, 2011.

Roychowdhury, S., Diligenti, M., and Gori, M. Regularizing
Deep Networks with Prior Knowledge: A Constraint-
based Approach. Knowledge-Based Systems, 222:106989,
2021.

Sun, R. Integrating Rules and Connectionism for Robust
Commonsense Reasoning, pp. 273. John Wiley & Sons,
Inc., 1994.

Tao, L., Huang, Y.-X., Dai, W.-Z., and Jiang, Y. Deciphering
Raw Data in Neuro-Symbolic Learning with Provable
Guarantees. In Proceedings of the 38th AAAI Conference
on Artificial Intelligence, Vancouver, BC, Canada, 2024.

Towell, G. G. and Shavlik, J. W. Knowledge-based Artificial
Neural Networks. Artificial Intelligence, 70(1):119–165,
1994.

van Krieken, E., Acar, E., and van Harmelen, F. Analyzing
Differentiable Fuzzy Logic Operators. Artificial Intelli-
gence, 302:103602, 2022.

Vapnik, V. N. An Overview of Statistical Learning Theory.
IEEE Transactions on Neural Networks, 10(5):988–999,
1999.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L. u., and Polosukhin, I. Atten-
tion Is All You Need. In Advances in Neural Information
Processing Systems 30, pp. 6000–6010, Long Beach, CA,
USA, 2017.

Wang, J., Deng, D., Xie, X., Shu, X., Huang, Y.-X., Cai,
L.-W., Zhang, H., Zhang, M.-L., Zhou, Z.-H., and Wu,
Y. Tac-Valuer: Knowledge-based Stroke Evaluation in
Table Tennis. In Proceedings of the 27th ACM SIGKDD
Conference on Knowledge Discovery & Data Mining, pp.
3688–3696, Virtual Event, Singapore, 2021.

Wang, K., Tsamoura, E., and Roth, D. On Learning La-
tent Models with Multi-instance Weak Supervision. In
Advances in Neural Information Processing Systems 36,
New Orleans, LA, USA, 2023.

Wei, Z., Feng, L., Han, B., Liu, T., Niu, G., Zhu, X., and
Shen, H. T. A Universal Unbiased Method for Classifica-
tion from Aggregate Observations. In Proceedings of the
40th International Conference on Machine Learning, pp.
36804–36820, Honolulu, Hawaii, USA, 2023.

Winters, T., Marra, G., Manhaeve, R., and Raedt, L. D.
DeepStochLog: Neural Stochastic Logic Programming.

In Proceedings of the 36th AAAI Conference on Artificial
Intelligence, pp. 10090–10100, Virtual, 2022.

Wu, Z., Lv, J., and Sugiyama, M. Learning with Proper
Partial Labels. Neural Computation, 35(1):58–81, 2023.

Xie, Z., Liu, Y., He, H.-Y., Li, M., and Zhou, Z.-H. Weakly
Supervised AUC Optimization: A Unified Partial AUC
Approach. IEEE Transactions on Pattern Analysis and
Machine Intelligence, pp. 1–16, 2024.

Xu, J., Zhang, Z., Friedman, T., Liang, Y., and Van den
Broeck, G. A Semantic Loss Function for Deep Learning
with Symbolic Knowledge. In Proceedings of the 35th
International Conference on Machine Learning, pp. 5502–
5511, Stockholm, Sweden, 2018.

Yang, X.-W., Shao, J.-J., Tu, W.-W., Li, Y.-F., Dai, W.-
Z., and Zhou, Z.-H. Safe Abductive Learning in the
Presence of Inaccurate Rules. volume 38, pp. 16361–
16369, Vancouver, BC, Canada, 2024.

Yang, Z., Ishay, A., and Lee, J. NeurASP: Embracing Neural
Networks into Answer Set Programming. In Proceedings
of the 29th International Joint Conference on Artificial
Intelligence, pp. 1755–1762, Yokohama, Japan, 2020.

Zhang, D., Han, J., Cheng, G., and Yang, M.-H. Weakly
Supervised Object Localization and Detection: A Sur-
vey. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 44(9):5866–5885, 2022.

Zhang, M.-L. and Zhou, Z.-H. A Review on Multi-label
Learning Algorithms. IEEE Transactions on Knowledge
and Data Engineering, 26(8):1819–1837, 2014.

Zhou, Z.-H. A Brief Introduction to Weakly Supervised
Learning. National Science Review, 5(1):44–53, 2017.

Zhou, Z.-H. Abductive Learning: Towards Bridging Ma-
chine Learning and Logical Reasoning. Science China
Information Sciences, 62(7):76101, 2019.

Zhou, Z.-H. and Huang, Y.-X. Abductive Learning. In
Neuro-Symbolic Artificial Intelligence: The State of the
Art, pp. 353–369. IOS Press, Amsterdam, 2022.

11



Ambiguity-Aware Abductive Learning

Appendix
The structure of this appendix is as follows:

• Appendix A includes the proofs3 omitted in the main text because of the space limit.

• Appendix B introduces the details of the implementation of our method and the comparison baselines.

• Appendix C provides more experiments about our method.

A. Proofs
A.1. Proving the Equality between Equation (10) and Equation (9)

Proof. The Equation (10) is

1

N

N∑
i=1

∑
c∈s(i)

p(c|x(i), s(i)) · L(f(x(i)), c) .

The Equation (9) is

1

m ·N
N∑
i=1

m∑
j=1

Lcls

(
f(x

(i)
j ), p(z|x(i)

j , s(i))
)
.

To demonstrate the equality, we consider a single sample (x, y).

On the one hand, we have:

1

m

m∑
j=1

Lcls (f(xj), p(z|xj , s)) =−
1

m

m∑
j=1

L∑
k=1

p(z = k|xj , s) log f(xj)

=− 1

m

m∑
j=1

L∑
k=1

∑
ci∈s

I[k = cij ]p(z = ci|x, s) log f(xj) .

(14)

The second equality build upon:

p(z = k|xj , s) =
∑
ci∈s

I[k = cij ]p(z = ci|x, s) .

On the other hand, we also have:

∑
ci∈s

p(c|x, s) · L(f(x), ci) =
∑
ci∈s

p(ci|x, s) ·
1

m

m∑
j=1

Lcls(f(xj), cij)

= − 1

m

∑
ci∈s

m∑
j=1

L∑
k=1

I[k = cij ]p(z = ci|x, s) log f(xj) .

(15)

Thus we prove the equality.

Further, when the p(c|x, s) is correctly estimated, we can prove that the Ambiguity-Aware Abductive Risk is actually an
unbiased risk estimator.

3The similar techniques we used here are widely adopted in many literatures in the (weakly) supervised learning field. Specifically, the
risk rewrite technology can be found in (Feng et al., 2020; Wu et al., 2023; Wei et al., 2023) and so on. The error bound technology can be
found in (Vapnik, 1999; Mohri et al., 2012; Maurer, 2016; Lu et al., 2019; Feng et al., 2020; Wu et al., 2023) and so on.

12



Ambiguity-Aware Abductive Learning

Theorem A.1 (Unbiased Risk Estimator). The classification risk Definition 3.1 can be equivalently expressed as:

R(f ;L) = Ep(x,s)

[∑
c∈s

p(c|x, s)L(f(x), c)
]
. (16)

We named this risk as Ambiguity-Aware Abductive Risk.

Proof.

R(f ;L) = Ep(x,z) [L(f(x), z)] (17)

=

∫
Xm

∑
c∈Zm

L(f(x), c)p(x, z = c)dx (18)

=

∫
Xm

∑
c∈Zm

∑
s⊆Zm

L(f(x), c) · p(x, z = c, s)dx (19)

=

∫
Xm

∑
c∈Zm

∑
s⊆Zm

L(f(x), c) · p(z = c|x, s) · p(x, s)dx (20)

=

∫
Xm

∑
c∈Zm

∑
s⊆Zm

L(f(x), c) · p(c|x, s) · p(x, s)dx (21)

= Ep(x,s)

[∑
c∈s

p(c|x, s) · L(f(x), c)
]
. (22)

A.2. Proof of Theorem 3.2

For reading convenience, we rewrite the theorem below:

Theorem A.2. The optimization of Equation (10) is actually optimizing the log-likelihood
∑N

i=1 log pθ(x
(i), y(i)), via the

EM algorithm.

Proof.

log pθ(x
(i), y(i)) = log

 ∑
c∈s(i)

pθ(x
(i), y(i), c)

 (23)

= log

 ∑
c∈s(i)

pθ(x
(i), c) · pθ(y(i)|x(i), c)

 (24)

= log

 ∑
c∈s(i)

pθ(x
(i), c)

 (25)

= log

 ∑
c∈s(i)

wc
pθ(x

(i), c)

wc

 (26)

≥
∑

c∈s(i)

wc log(
pθ(x

(i), c)

wc
) (27)

The second equality holds because pθ(y
(i)|x(i), c) should always be equal to 1, as we can derive y(i) through candidate c

using background knowledge, e.g., σ(c) = y(i).

The last inequality is derived from Jensen’s inequality.

13



Ambiguity-Aware Abductive Learning

Suppose the size of candidate set s(i) = li, when the equality holds, which means:

pθ(x
(i), c1)

wc1

= · · · = pθ(x
(i), cli)

wcli

= C. (28)

Thus we can get:
li∑

j=1

pθ(x
(i), cj)

C
=

li∑
j=1

wcj
= 1. (29)

So we have:
li∑

j=1

pθ(x
(i), cj) = C. (30)

It is easy to see that, pθ(x(i), cj , s
(i)) = pθ(x

(i), cj) because we can derive the whole candidate set from one candidate by
using the knowledge base, and further we get:

li∑
j=1

pθ(x
(i), cj , s

(i)) = C = pθ(x
(i), s(i)). (31)

Finally, we get:
pθ(x

(i), c)

pθ(x(i), s(i))
= wc =

pθ(x
(i), c, s(i))

pθ(x(i), s(i))
= p(c|x(i), s(i)). (32)

The formulation presented above indicates that by setting wc as the candidate confidence introduced in Equation (7), we are
performing the E-step in the Expectation-Maximization (EM) algorithm. After the E-step, the values of wc are fixed, and we
proceed to optimize Equation (10) in the M-step in order to maximize the likelihood. This supports our earlier statement.
Consider that EM algorithm is well established that has convergence promise, this implies that the optimization of A3BL can
be guaranteed.

A.3. Proof of Theorem 3.3

Most of the prove tricks can be found in Mohri et al. (2012), especially the proof here were inspired by Wu et al. (2023)
and Feng et al. (2020). For reading convenience, we rewrite the theorem below:

Theorem A.3 (Error bound). Suppose that L(f(x), z) is ρ-Lipschitz with respect to f(x) for all z ∈ Zm and upper-
bounded by M , i.e., M = supf∈F,x∈Xm,z∈Zm L(f(x), z). Let Rn(Fi) be the Rademacher complexity of Fi with sample
size n. Then for any δ > 0, with probability at least 1− δ,

R(f̂A3)−R(f⋆) ≤ 4
√
2ρ

K∑
i=1

Rn(Fi) + 2M

√
log (2/δ)

2n
. (33)

To prove the Theorem 3.3, we first introduce the following lemma:

Lemma A.4. The following inequality holds:

0 ≤ R(f̂A3)−R(f⋆) ≤ 2 sup
f
|R(f)−RA3(f̂)|. (34)

Proof. By definition, R(f̂A3)−R(f⋆) ≥ 0, thus the first inequality is proved.

14



Ambiguity-Aware Abductive Learning

Since,

R(f̂A3)−R(f⋆) = (R(f̂A3)−RA3(f̂A3)) + (RA3(f̂A3)−RA3(f⋆)) + (RA3(f⋆)−R(f⋆)), (35)

≤ (R(f̂A3)−RA3(f̂A3)) + (RA3(f⋆)−R(f⋆)), (36)

≤ 2 sup
f
|R(f)−RA3(f̂)|, (37)

thus proving the second inequality.

Definition A.5 (Empirical Rademacher Complexity). Let G be a class of functions mappingZ 7→ R and S = (z1, · · · , zn) ∈
Zn a fixed sample of size n. Then the empirical Rademacher complexity of G with respect to the sample S is defined as:

R̂S(G) = Eσ

[
sup
g∈G

1

n

n∑
i=1

σig (zi)

]
, (38)

where σ = (σ1, · · · , σn), with σi is independent uniform random variables taking from {−1,+1}.
Definition A.6 (Rademacher Complexity). Suppose the sample S with size n is drawn from distribution p i.i.d. The
Rademacher complexity of G with respect to p is defined as:

Rn(G) = Ezi∼p

[
R̂S(G)

]
. (39)

We introduce a class of functions defined on Xm ×Zm according to Equation (7):

G = {(x, z) 7→
∑
c∈s

p(c|x, s)L(f(x), c) : f ∈ F}. (40)

Then the Rademacher complexity of G with respect to p(x, c) is given as:

Rn(G) = E(xi,ci)∼p

[
Eσ

[
sup
g∈G

1

n

n∑
i=1

σig(xi, ci)

]]
. (41)

Lemma A.7. Suppose M = supx∈Xm,z∈Zm,f∈F L(f(x), z) <∞, then for any δ > 0, the following inequality holds with
the probability at least 1− δ.

sup
f∈F
|R(f)− R̂A3(f)| ≤ 2Rn(G) +M

√
log(2/δ)

2n
. (42)

Proof. For a sample S, we define ϕ(S) = supf∈F (R(f)− R̂A3(f)). Suppose we replace an example (xi, ci) in the sample
S with another example (x′

i, c
′
i), the change of ϕ(S) is not greater than:

sup
g∈G

g(xi, ci)− g(x′
i, c

′
i)

n
≤ M

n
, (43)

since L is bounded by M . Then by McDiarmid’s inequality, for any δ > 0, with a probability at least 1− δ
2 , the following

inequality holds:

ϕ(S) ≤ E(xi,ci)∼p[ϕ(S)] +M

√
log(2/δ)

2n
. (44)

By Chapter 3 in Mohri et al. (2012), it is easy to show that E(xi,ci)∼p [ϕ(S)] ≤ 2Rn(G). Hence the following holds with
probability at least 1− δ/2:

sup
f∈F

(R(f)− R̂A3(f)) ≤ 2Rn(G) +M

√
log(2/δ)

2n
, (45)

thus complete the proof.

15



Ambiguity-Aware Abductive Learning

Lemma A.8. Suppose that the loss L(f(x), z) is ρ-Lipschitz with respect to f(x) for all z ∈ Zm. Then the following
inequality holds:

Rn(G) ≤
√
2ρ

K∑
i=1

Rn(Fi). (46)

Proof. Let Π = {(x, c) 7→ L(f(x), c) : f ∈ F}. Notice that the candidate confidence p(c|x, s) is between 0 and 1, and
that

∑
c∈s p(c|x, s) = 1. In this way, we can obtain:

Rn(G) = E(xi,ci)∼p

[
Eσ

[
sup
g∈G

1

n

n∑
i=1

σig(xi, ci)

]]
, (47)

≤ E(xi,ci)∼p

[
Eσ

[
sup
f∈F

1

n

n∑
i=1

σiL(f(xi), ci)

]]
, (48)

= Rn(Π). (49)

Since L is ρ-Lipschitz, following the Rademacher vector contraction inequality (Maurer, 2016), we have:

Rn(Π) ≤
√
2ρ

K∑
i=1

Rn(Fi), (50)

which concludes this proof.

Finally, the proof of Theorem 3.3 can be completed by combining the above lemmas.

16



Ambiguity-Aware Abductive Learning

B. Implementation Details
All experiments were conducted on a system equipped with an NVIDIA GeForce RTX 3090 GPU, Intel Xeon Silver 4210
CPU, 64GB of RAM, and Ubuntu 20.04 Focal. All experiments use Adam (Kingma & Ba, 2015) as the optimizer. For
convenience, a summary table detailing the configurations of various methods is presented in Table 3.

Table 3. For the experimental setup, the configurations for the methods compared were chosen according to their official implementations,
and A3BL aligns with the standard configurations of ABL.

Digit Addition Handwritten Formula Recognition

Method Optimizer Learning rate Batch size Epoch Optimizer Learning rate Batch size Epoch

A3BL Adam 0.001 256 50 Adam 0.001 1024 50
ABL-hamming Adam 0.001 256 50 Adam 0.001 1024 50
ABL-conf Adam 0.001 256 50 Adam 0.001 1024 50
DeepProbLog Adam 0.001 128 50 Adam 0.001 32 50
DeepStochLog Adam 0.001 256 50 Adam 0.003 32 50
NeurASP Adam 0.001 1000 50 - - - -
NGS - - - - Adam 0.0005 64 50

B.1. Details of Datasets

For convenience, the information of datasets can be seen in Table 4.

Construction of Digit Addition The construction of the digit addition task is based on a ten-class dataset, such as MNIST.
To construct a digit addition input x, we randomly select 2 ∗ n images from the dataset, where n represents the digit-size.
The summation y of this input can be computed using digit addition rules. The size of the constructed equations remains
constant across all digit-sizes. To ensure this consistency, each image is sampled n times. Consequently, the size of the
constructed equations is invariably fixed to N/2, where N denotes the total number of images in the original dataset.

Construction of Handwritten Formula Recognition The development of the handwritten formula recognition task
leverages the foundational implementation outlined by Li et al. (2020). In our experiments, we replace the corresponding
digit with a randomly sampled image from a specific class within either the CIFAR or SVHN dataset. To ensure consistent
training, for both CIFAR and SVHN datasets, we transform the original operator images from a dimension of 45× 45 to
3× 32× 32.

Table 4. Dataset details for Handwritten Formula Recognition and Digit Addition tasks.

Task #instances of a sequence #sequence of training set #sequence of test set

Handwritten Formula Recognition 5 or 7 8000 1600
Digit Addition, n=1 2 30000 10000
Digit Addition, n=2 4 30000 10000
Digit Addition, n=3 6 30000 10000
Digit Addition, n=4 8 30000 10000

B.2. Implementation of A3BL

The pseudo-code of A3BL can be referred in Algorithm 1.

Abduction Process The official implementation of the ABL package implements the abduction process through zeroth-
order optimization, abduction search, or by pre-building the knowledge base, that is, storing all possible candidates
concerning the potential target label y. A3BL adopts the same abduction process, which is built upon their implementations.

17



Ambiguity-Aware Abductive Learning

Algorithm 1 A3BL Algorithm

Require: Knowledge base KB, Perception model f , dataset (X̂m, Ŷ).
1: for each pair (x(i), yi) in (X̂m, Ŷ) do
2: ẑ(i) ← f(x(i))
3: ŷ(i) ← KB.logical forward(ẑ(i))
4: if y(i) ̸= ŷ(i) then
5: s(i) ← KB.abduce(y(i), ẑi) # Abduce all candidates that valid.
6: end if
7: loss← 1

N

∑N
i=1

∑
c∈s(i) pθ(c|x(i), s(i)) · L(f(x(i)), c). # Calculate the ambiguity-aware abductive risk.

8: Update the perception model f
9: end for

Candidate Confidence For the computation of Equation (7), the equation can be reformulated as follows:

p(c|x, s) = p(c,x, s)

p(x, s)
=

p(c, s)

p(s,x)
=

p(c|x)
p(s|x) . (51)

The validity of the second equation stems from the capability to generate the entire candidate set from a singular candidate
by leveraging the knowledge base. Consider the case SUM( , ), where a candidate is given as = 2, = 1. Although
this candidate may not be correct, it demonstrates that the SUM( , ) = 3, thus can derive the entire candidate set.

Consequently, a parameterized model, exemplified by f , is utilized to estimate the final term p(c|x)/p(s|x) =
pθ(c|x)/pθ(s|x). The denominator term pθ(s|x) is calculated using the equation pθ(s|x) =

∑
c∈s pθ(c|x). The term

pθ(c|x) is computed utilizing a neural network. Subsequently, all candidate confidences are normalized using a softmax
function with temperature adjustment. In practice, the temperature is set to 0.3 without careful tuning .

Challenge: The Expanding Size of the Candidate Set A significant challenge inherent in our method is the expansion of
the candidate set size with increasing background knowledge complexity, as illustrated in Figure 5. For instance, in the digit
addition task, increasing the number of digits from one to two causes the average size of the candidate set to grow from
approximately five to nearly fifty, potentially overburdening the learning system.

HWF Digit Addition 1 Digit Addition 2 Digit Addition 3 Digit Addition 4

100

101

102

103

104

Avg: 38.39

Avg: 5.26

Avg: 50.25

Avg: 500.25

Avg: 5000.25

Figure 5. Variation in the size of abduction candidates across different tasks. This reveals two key observations: (a) As the size of the
digits increases, the size of the abduction candidate set grows exponentially; (b) The size of the abduction candidate set for the HWF task
varies from 1 to approximately 104, yet the average size remains relatively small.

18



Ambiguity-Aware Abductive Learning

Speed Up In Equation (10), different weights are assigned to various candidates based on their confidence levels. However,
a significant number of candidates exhibit low confidence, resulting in minimal contribution to the optimization objective. To
speed up, our objective is to balance between the consistency of risk and the efficiency of the training process. Consequently,
a top-k selection, based on confidence, is introduced within the candidate set to facilitate algorithm implementation. While
further tuning of this hyper-parameter could be beneficial to balance efficiency and performance, in this study, we chose
k = 32 for all experiments.

Sensitivity Analysis about k To balance risk consistency and computational efficiency, a top-k selection, based on
confidence, is introduced within the candidate set to facilitate algorithm implementation. Intuitively, as k increases, the
derived risk tends to be unbiased, potentially leading to faster or more stable algorithm convergence.

0 100 200 300 400

0.0

0.2

0.4

0.6

0.8

1.0

Addition-CIFAR n=3

0 100 200 300 400

Addition-CIFAR n=4

A3BL topk=2

A3BL topk=4

A3BL topk=8

A3BL topk=16

A3BL topk=32

A3BL topk=64

Figure 6. Abduction process: x-axis refers the steps, y-axis refers the abduction accuraies. The abduction accuracy means whether the
candidate with the highest weight is indeed the correct one.

0 2 4 6 8 10 12

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Addition-CIFAR n=3

0 2 4 6 8 10 12

Addition-CIFAR n=4

A3BL topk=2

A3BL topk=4

A3BL topk=8

A3BL topk=16

A3BL topk=32

A3BL topk=64

Figure 7. Test accuracies: x-axis refers the epoches, y-axis refers the (concept) test accuraies.

As shown in the results in Figure 6 and Figure 7. For a small k, the model behaves similarly to a naive ABL approach,
exhibiting high variance. Increasing k to a moderate value, such as 8, stabilizes performance and speeds up convergence.
Further increasing k beyond a certain threshold does not significantly improve performance, indicating a saturation point.

19



Ambiguity-Aware Abductive Learning

B.3. Implementation of Compared Methods

The implementations of the compared methods are all based on their official implementations. To ensure a fair comparison,
we may modify certain backbones of the machine learning models to maintain consistency across all methods.

Specifically:

• The implementation of ABL-hamming and ABL-conf is based on their official package. 4

• The implementation of NGS is based on their official package.5

• The implementation of DeepStochLog is based on their official package.6

• The implementation of DeepProbLog is based on their official package.7

• The implementation of NeurASP is based on their official package.8

Some methods, such as DeepStochLog, DeepProbLog, and NeurASP, require the writing of Prolog-like knowledge bases,
which are listed below.

digit(Y) :- member(Y,[0,1,2,3,4,5,6,7,8,9]).
nn(number, [X], Y, digit) :: is_number(Y) --> [X].
addition(N) --> is_number(N1), is_number(N2), {N is N1 + N2}.
multi_addition(N, 1) --> addition(N).
multi_addition(N, L) --> {L > 1, L2 is L - 1}, addition(N1), multi_addition(N2, L2), {N is

N1*(10**L2) + N2}.

Listing 1. Digit Addition knowledge base for DeepStochLog

dom_number(X) :- member(X, [0,1,2,3,4,5,6,7,8,9]).
nn(number, [X], Y, dom_number) :: is_number(Y) --> [X].

dom_operator(X) :- member(X, [plus, minus, times, div]).
nn(operator, [X], Y, dom_operator) :: operator(Y) --> [X].
factor(N) --> is_number(N).

0.34 :: term(N) --> factor(N).
0.33 :: term(N) --> term(N1), operator(times), factor(N2), {N is N1 * N2}.
0.33 :: term(N) --> term(N1), operator(div), factor(N2), {N2>0, N is N1 / N2}.

0.34 :: expression(N) --> term(N).
0.33 :: expression(N) --> expression(N1), operator(plus), term(N2), {N is N1 + N2}.
0.33 :: expression(N) --> expression(N1), operator(minus), term(N2), {N is N1 - N2}.

Listing 2. Handwritten Formula Recognition knowledge base for DeepStochLog

4https://github.com/AbductiveLearning/ABLkit/tree/Dev
5https://github.com/liqing-ustc/NGS
6https://github.com/ML-KULeuven/deepstochlog/tree/main/examples
7https://github.com/ML-KULeuven/deepproblog/tree/master/src/deepproblog/examples
8https://github.com/azreasoners/NeurASP/tree/master/examples

20

https://github.com/AbductiveLearning/ABLkit/tree/Dev
https://github.com/liqing-ustc/NGS
https://github.com/ML-KULeuven/deepstochlog/tree/main/examples
https://github.com/ML-KULeuven/deepproblog/tree/master/src/deepproblog/examples
https://github.com/azreasoners/NeurASP/tree/master/examples


Ambiguity-Aware Abductive Learning

nn(mnist_net,[X],Y,[0,1,2,3,4,5,6,7,8,9]) :: digit(X,Y).

number([],Result,Result).
number([H|T],Acc,Result) :- digit(H,Nr), Acc2 is Nr+10*Acc,number(T,Acc2,Result).
number(X,Y) :- number(X,0,Y).

multi_addition(X,Y,Z) :- number(X,X2),number(Y,Y2), Z is X2+Y2.
addition(X,Y,Z) :- digit(X,X2), digit(Y,Y2), Z is X2+Y2.

Listing 3. Digit Addition knowledge base for DeepProbLog

nn(net1,[X],Y,[0,1,2,3,4,5,6,7,8,9]) :: detect_number(X,Y).
nn(net2,[X],Y,[+,-,*,/]) :: detect_operator(X,Y).

detect_all([N],[N2]) :- detect_number(N,N2).
detect_all([N,O|T],[N2,O2|T2]) :- detect_number(N,N2),
detect_operator(O,O2), detect_all(T,T2).

almost_equal(X,Y) :- ground(Y),abs(X-Y) < 0.0001.
almost_equal(X,Y) :- var(Y), Y is float(X).

expression(Images,Result) :- detect_all(Images,Symbols),parse(Symbols,Result).

parse([N],R) :-almost_equal(N,R).

parse([N1,+|T], R) :- parse(T,R2), almost_equal(N1+R2,R).

parse([N1,-|T], R) :- parse([-1,*|T],R2), almost_equal(N1+R2,R).

parse([N1,*,N2|T], R) :- N3 is N1*N2, parse([N3|T],R).

parse([N1,/,N2|T], R) :- N2 \== 0, N3 is N1/N2, parse([N3|T],R).

Listing 4. Handwritten Formula Recognition knowledge base for DeepProbLog

img(i1). img(i2).
addition(A,B,N) :- digit(0,A,N1), digit(0,B,N2), N=N1+N2.
nn(digit(1,X), [0,1,2,3,4,5,6,7,8,9]) :- img(X).

Listing 5. Digit Addition knowledge base for NeurASP

21



Ambiguity-Aware Abductive Learning

C. More Experiments
This section includes additional experiments not covered in the main text due to space limitations, as outlined below:

(a) Digit Addition The additional experimental results concerning Addition-MNIST and Addition-KMNIST are presented
in Figure 8 and Table 5, respectively. The conclusion remains the same as for Addition-CIFAR and Addition-SVHN: ABL
suffers from ambiguity in the abduction candidates, while A3BL can effectively utilize the abduction candidates. It is also
worth noting that DeepStochLog performs well in these settings. However, A3BL converges faster and exhibits a smoother
learning curve.

Table 5. Test accuracies (mean ± standard deviation) on digit addition task with different perception dataset. Each experiment was
conducted five times. The best performance is denoted in boldface. ‘N/A’ indicates that the method failed to complete a single epoch
within 48 hours.

Addition-MNIST Addition-KMNIST

Method 1 2 3 4 1 2 3 4

DeepStochLog (Winters et al., 2022) 99.00±0.13 98.88±0.02 98.94±0.15 98.98±0.13 94.00±0.73 94.06±0.30 94.00±0.29 93.93±0.49

NeurASP (Yang et al., 2020) 50.01±0.44 10.21±0.39 10.21±0.39 N/A 10.01±0.58 10.05±0.51 N/A N/A
Deepproblog (Manhaeve et al., 2021) 97.42±0.29 N/A N/A N/A 80.54±0.21 N/A N/A N/A
ABL-hamming (Dai et al., 2019) 98.49±0.22 98.65±0.08 98.63±0.12 60.41±40.27 91.48±0.54 92.43±0.65 63.51±36.91 47.74±37.13

ABL-conf 79.31±41.35 79.32±41.61 77.10±43.53 79.22±41.65 86.32±25.40 79.80±34.91 72.76±38.75 54.84±42.97

A3BL (Ours) 98.92±0.15 99.03±0.09 98.68±0.17 98.42±0.08 94.84±0.25 94.31±0.21 93.16±1.00 92.97±0.44

0 10 20 30 40 50

0.0

0.2

0.4

0.6

0.8

n=1

0 10 20 30 40 50

n=2

0 10 20 30 40 50

n=3

0 10 20 30 40 50

n=4

0 10 20 30 40 50

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
n=1

0 10 20 30 40 50

n=2

0 10 20 30 40 50

n=3

0 10 20 30 40 50

n=4

A3BL ABL-hamming ABL-conf Deepstochlog Deepproblog NeurASP

(a) Addition-KMNIST

0 10 20 30 40 50

0.0

0.2

0.4

0.6

0.8

1.0

n=1

0 10 20 30 40 50

n=2

0 10 20 30 40 50

n=3

0 10 20 30 40 50

n=4

0 10 20 30 40 50

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
n=1

0 10 20 30 40 50

n=2

0 10 20 30 40 50

n=3

0 10 20 30 40 50

n=4

A3BL ABL-hamming ABL-conf Deepstochlog Deepproblog NeurASP

(b) Addition-MNIST

Figure 8. Performance curves (accuracy vs. epochs) of compared methods on digit addition tasks. The shaded area represents the standard
error of the methods over 5 repetitions. Cross marks denote experiments that were not finished within 48 hours.

22



Ambiguity-Aware Abductive Learning

(b) Handwritten Formula Recognition The test accuracy results are presented in Table 6. Both DeepProbLog and
variants of NGS underperform in this setting, while DeepStochLog performs well in HWF, it falls behind ABL-conf and
A3BL in the HWF-CIFAR and HWF-SVHN settings. It is important to note that the average size of the candidate set is
relatively small, approximately 39, as shown in Figure 5. Therefore, ABL-conf demonstrates strong performance in this
task, but it still converge slower than A3BL.

Table 6. Test accuracies (mean ± standard deviation) on handwritten formula recognition tasks with different perception dataset. Each
experiment was conducted five times. The best performance is denoted in boldface. ‘N/A’ indicates that the method failed to complete a
single epoch within 48 hours.

Method HWF-CIFAR HWF-SVHN HWF

NGS-BS (Li et al., 2020) 28.25±0.90 26.91±0.81 31.65±4.40

NGS-RL (Li et al., 2020) 16.45±1.62 23.38±3.31 16.92±0.30

NGS-MAPO (Li et al., 2020) 20.99±6.83 24.23±2.03 16.89±0.26

DeepStochLog (Winters et al., 2022) 75.41±2.21 75.29±23.81 99.65±0.06

Deepproblog (Manhaeve et al., 2021) N/A N/A N/A
ABL-hamming (Dai et al., 2019) 41.73±2.47 37.18±6.57 99.40±0.10

ABL-conf 78.47±0.69 91.21±0.34 99.47±0.17

A3BL (Ours) 78.92±0.50 91.83±0.55 99.41±0.12

(c) Worst Case Analysis A worst-case analysis of ABL-hamming is depicted in Figure 9, focusing on the Addition-CIFAR
task with a digit size of two. The learning curve of A3BL demonstrates consistent improvement in both reasoning and
conceptual accuracy over time. However, ABL-hamming does not exhibit this trend. ABL-hamming struggles, displaying
significant instability in its training process, particularly in the reasoning accuracy curve. Furthermore, the confusion matrix
of ABL-hamming suggests that the model’s predictions are nearly equivalent to random guessing. This suggests that the
ambiguity inherent in the abduction results poses challenges for the machine learning model.

0 10 20 30 40 50

0.5

1.0

1.5

2.0

2.5

3.0

×10−1

3.0

4.0

5.0

6.0

7.0

×10−1

Reasoning Accuracy
Concept Accuracy

Predict

Ac
tu

al

0.88 0.01 0.02 0.00 0.02 0.00 0.00 0.01 0.01 0.04

0.01 0.74 0.01 0.09 0.01 0.04 0.03 0.03 0.04 0.00

0.03 0.01 0.90 0.00 0.03 0.01 0.00 0.00 0.00 0.01

0.01 0.11 0.00 0.77 0.01 0.03 0.03 0.04 0.02 0.00

0.02 0.01 0.03 0.00 0.86 0.03 0.01 0.01 0.01 0.01

0.01 0.05 0.01 0.03 0.04 0.78 0.04 0.02 0.03 0.00

0.00 0.04 0.01 0.02 0.01 0.04 0.80 0.04 0.03 0.00

0.01 0.02 0.00 0.03 0.01 0.01 0.03 0.88 0.01 0.00

0.00 0.04 0.00 0.02 0.00 0.02 0.02 0.01 0.88 0.00

0.05 0.01 0.01 0.00 0.03 0.00 0.00 0.00 0.01 0.88

(a) A3BL

0 10 20 30 40 50

0.0

0.2

0.5

0.8

1.0

1.2

1.5

1.8

×10−3

6.5

6.6

6.7

6.8

6.9

7.0

×10−2

Reasoning Accuracy
Concept Accuracy

Predict

Ac
tu

al
0.00 0.56 0.00 0.05 0.00 0.39 0.00 0.00 0.00 0.00

0.00 0.79 0.00 0.04 0.00 0.17 0.00 0.00 0.00 0.00

0.00 0.71 0.00 0.04 0.00 0.25 0.00 0.00 0.00 0.00

0.00 0.30 0.00 0.48 0.00 0.21 0.00 0.00 0.00 0.00

0.00 0.25 0.00 0.15 0.00 0.60 0.00 0.00 0.00 0.00

0.00 0.21 0.00 0.13 0.00 0.65 0.00 0.00 0.00 0.00

0.00 0.22 0.00 0.49 0.00 0.28 0.00 0.00 0.00 0.00

0.00 0.76 0.00 0.08 0.00 0.16 0.00 0.00 0.00 0.00

0.00 0.71 0.00 0.05 0.00 0.24 0.00 0.00 0.00 0.00

0.00 0.76 0.00 0.04 0.00 0.20 0.00 0.00 0.00 0.00

(b) ABL-hamming

Figure 9. Worst case performance tendency comparison between A3BL and ABL-hamming.

23



Ambiguity-Aware Abductive Learning

0 10 20 30 40
0.0

0.2

0.4

0.6

0.8

1.0

HWF-CIFAR

0 10 20 30 40

HWF-SVHN

0 10 20 30 40

HWF

A3BL ABL-hamming ABL-conf

Figure 10. Abduction process (abduction accuracies vs. steps) of A3BL and ABL on handwritten formula recognition tasks. The shaded
area represents the standard error of the methods over 5 repetitions.

(d) Abduction Accuracies Figure 10 illustrates the abduction processes employed by A3BL, ABL-hamming, and ABL-
conf on handwritten formula recognition tasks. The process is conducted over 40 steps, corresponding to 10 epochs.
ABL-hamming was unable to identify the correct candidate, similarly, ABL-conf faced challenges in this regard. However,
A3BL effectively distinguishes the correct candidate among abduction candidates through dynamic weight assignment to all
potential candidates. Within 10 epochs, A3BL attains high abduction accuracy, providing clear supervision to the machine
learning model.

24


