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Abstract—Program translation aims to convert the input pro-
grams from one programming language to another. Automatic
program translation is a prized target of software engineering
research, which leverages the reusability of projects and improves
the efficiency of development. Recently, thanks to the rapid devel-
opment of deep learning model architectures and the availability
of large-scale parallel corpus of programs, the performance of
program translation has been greatly improved. However, the
existing program translation models are still far from satisfactory,
in terms of the quality of translated programs. In this paper,
we argue that a major limitation of the current approaches is
lack of consideration of semantic consistency. Beyond lexical
consistency, semantic consistency is also critical for the task.
To make the program translation model more semantically
aware, we propose a general framework named Preserving
Semantic Consistency for Program Translation (PSCPT), which
considers semantic consistency with regularization in the training
objective of program translation and can be easily applied to
all encoder-decoder methods with various neural networks (e.g.,
LSTM, Transformer) as the backbone. We conduct extensive
experiments in 7 general programming languages. Experimental
results show that with CodeBERT as the backbone, our approach
outperforms not only the state-of-the-art open-source models but
also the commercial closed large language models (e.g., text-
davinci-002, text-davinci-003) on the program translation task.
Our replication package (including code, data, etc.) is publicly
available at https://github.com/duyali2000/PSCPT.

Index Terms—Program Translation, Semantic Consistency,
Regularization, Large Language Model

I. INTRODUCTION

Nowadays, programs have become the main tool for build-
ing computer applications, the information technology indus-
try, and the digital world [1], [2]. To this end, various program-
ming languages have been invented to develop programs with
different demands. Unfortunately, when combining programs
written in different programming languages, the developer
usually suffers from the intensive labor of manually translating
programs from one to another programming language. For ex-
ample, many industries spend hundreds of millions of dollars
to convert code written in older programming languages (e.g.,
FORTRAN and COBOL) to newer ones (e.g., Java, C++) [3].
To alleviate the burden of program migration and facilitate the
development of software systems, program translation, which
aims to automatically translate the program from one program-
ming language to another, has drawn significant attention in
the software mining community [4]–[8].

*Ming Li is the corresponding author.

Recently, the booming development of machine learning
coupled with the availability of an extensive parallel corpus
of programs has led to a remarkable enhancement in the
performance of program translation. Traditional approaches
rely on the statistical machine translation [9], [10], attempting
to adapt phrase-based statistical machine translation models
with grammatical rules for code migration. Recent studies
indicate that programs solving the same problem may have
high diversity regarding variable names, method design, and
logical flow, and such diversity especially becomes a bot-
tleneck in program translation. To address this issue, recent
program translation models aim to mine fixed correspondences
between code patterns in different programming languages
by minimizing the lexical difference between the generated
program and the target program. For example, Zhu et al. [11]
propose MuST to leverage the similarity between different
programming languages like C++ and C and the snippet-
level translation to enhance the more complex and challenging
program-level translation. Guo et al. [12] propose GraphCode-
BERT to utilize the data flow graph to extra capture the
structural information of programs. Chen et al. [1] design a
tree-to-tree neural network with the parse trees to align the
source and target programs with grammar.

However, given the flexibility of programming language,
even a tiny variance in lexical may cause a huge gap in
semantics. As illustrated in Figure 1, the translated program
is decoded from the source program and contrasted with the
parallel target program. In the example, despite encountering a
bit of confusion during program translation, the resulting trans-
lated program exhibits a significant degree of lexical similarity
to the target program, attaining a BLEU score nearing 0.9.
However, there is obviously a huge gap between the semantics
of the two programs. While the target program would generate
an in-order traversal of the binary tree, the translated program
would yield a pre-order traversal of the same binary tree.
It is terrifying, as a small translated difference is hard to
identify by developers, but the translated error may cause a
high cost in development. Therefore, in addition to considering
lexical consistency, we should further preserve the semantic
consistency in program translation.

One question arises here: how to take advantage of semantic
consistency to leverage program translation? The semantics
of the program can be calculated in any number of ways,
which is usually set as the latent feature encoded by neural
networks in other domains [13]–[17]. However, the neural
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Fig. 1: A tiny lexical variance may cause a huge gap in semantics.
The source program would output an in-order traversal of the binary
tree, but the translated program would output a preorder traversal of
the binary tree.

networks in the earlier training stages are unreliable since
the semantic embedding space is still under optimization. To
achieve this goal of constructing the latent space containing the
semantics of a program in the target programming language,
an auto-encoding regularization is applied to reconstruct the
target program. Moreover, as the training is conducted in
a supervised manner, a semantic-preserving regularization is
designed between the latent vectors of the translated and target
programs to bias the semantic consistency.

In our work, we argue that semantic consistency should be
considered in the program translation. To this end, we propose
a new framework named Preserving Semantic Consistency
for Program Translation (PSCPT). The regularization terms
of auto-encoding and semantic-preserving beyond the general
objective are designed for program translation. Moreover,
the regularized program translation framework can be easily
applied to all encoder-decoder methods with various neural
networks (e.g, LSTM, Transformer) as the backbone. The
extensive experiment is conducted on a widely used dataset,
which includes 7 general programming languages (i.e., C, C#,
C++, Java, Javascript, PHP, and Python). Compared with the
state-of-the-art approaches, PSCPT achieves more than 9.40%
improvement on average in terms of BLEU score [18] in
program translation. Furthermore, to evaluate the quality of the
translated program comprehensively in practical application,
an experiment is conducted on a new dataset collected from
real programming contests, and the results demonstrate that
the PSCPT outperforms both the open-source models and the
commercial closed large language models (e.g., text-davinci-
002, text-davinci-003) in terms of all sorts of metrics at lexical,
syntactic, and semantic levels.

In summary, we make the following major contributions:

• We argue that beyond lexical consistency, semantic con-
sistency is crucial to be considered in program translation.

• A novel training framework is proposed for program
translation, which measures both lexical and semantic

consistency. It is the first attempt to explore semantic
consistency regularization in program translation.

• We evaluate the performance of PSCPT on 7 general
programming languages and up to 42 translation pairs.
Compared with the state-of-the-art, PSCPT achieves more
than 9.40% improvement on average in terms of BLEU
score in program translation, which indicates preserving
semantic consistency improves the program translation
models dramatically.

The rest of the paper is organized as follows. In Section
2, the related works are discussed. Then the detail of the
proposed regularized framework is introduced in Section 3.
Experiments are provided in Section 4. Then the whole paper
is concluded in Section 5.

II. RELATED WORK

A. Automatic Program Translation

The previous works applied phrase-based statistical ma-
chine translation techniques to program translation [6]–[10],
[19], which leveraged grammatical structures of programming
languages for code migration. Nguyen et al. [10] presented
an approach to programming language translation based on
statistical language models, which integrated parsing queries
to the programming language grammar into a phrase-based
translation approach. Nguyen et al. [6] used Word2Vec rep-
resentation of different programming languages and learned a
transformation matrix for mapping. SMT [20] was a statistical
phrase-based and tree-to-string machine translation technique,
that can automatically learn statement-wise pseudo-code gen-
erators and require less human effort.

Recently, various deep learning techniques were employed
to program translations [1], [3], [21]–[23]. Zhu et al. pro-
posed a multilingual program translation model that used
code snippets translation as a pre-training method to improve
the accuracy of program translation [11]. Moreover, inspired
by the success of pre-training models in natural language
processing, a number of pre-training models are proposed in
the software mining community, and the program translation
is always used as one of the downstream tasks to evaluate
the pre-training models [24]–[28]. For instance, GraphCode-
BERT [12] imported structural information to enhance the
code representation by adding the data flow graph as an auxil-
iary of input tokens, which improved the performance of code
representation upon CodeBERT [29]. The most widely used
loss function of program translation is the cross-entropy [30]
calculated between the predicted tokens and referenced tokens,
which preserves the lexical consistency in program translation.
However, beyond lexical consistency, semantic consistency is
also crucial to be considered in program translation.

B. Evaluation Metrics

There are various metrics that attempt to evaluate the per-
formance of program translation approaches from lexical-level,
syntactic-level, and semantic-level similarities. BLEU [18] is
the most popular lexical similar metric in translation research,
originated in 2002 from the machine translation research



community. The introduction of BLEU has facilitated the
automated training and optimization of machine translation
systems, expediting the research process. BLEU works by
comparing n-grams in the prediction and reference. In the most
typical implementation, n ranges from 1 to 4 and is used to
compute a BLEUn score:

BLEUn =

∑
tn

min{Cp(tn), Cr(tn)}
P (n)

, (1)

where tn is the n-gram, Cp(tn), Cr(tn) are the counts of
the n-gram in the translated program and the target program,
respectively, and Pn is the total number of n-grams. The
single aggregate BLEU is reported in most papers, which is
basically the product of the BLEUn scores [13]. However,
there are some limitations for BLEU to evaluate the code of the
programming languages. Compared with natural language that
has evolved naturally in humans through use and repetition,
code is artificially designed to produce various kinds of
output [31]. Weighted N-Gram Match Score [31] is introduced
to assign different weights for different n-grams, where the
keywords may have higher weights. Accuracy is another used
occasionally lexical similar metric in program translation [12],
which is highly dependent on the token hit or missed in the
fixed position:

Accuracy =
1

n

n∑
i=0

I(gi = ri), (2)

where n is the number of the tokens of the reference program,
gi is the i-th token of the translated program, and ri is the i-th
token of the referenced program.

In addition to the lexical similarity, the syntactic similar-
ity is usually measured by matching the abstract syntactic
tree (AST) of the programs named AST Match Score [31].
In one abstract syntactic tree, each node denotes a construct
occurring in the source program. The leaves of the abstract
syntactic tree represent the names of the function and all the
variables. All the sub-trees of the abstract syntactic trees of
the translated program and the target program are extracted
respectively1 to calculate the syntactic similarity.

The semantic similarity is usually measured by matching
the data flow graph (DFG) of the programs named DataFlow
Match Score [31]. A data flow graph represents the relation-
ship graph of the variables in the program, in which nodes
represent variables and edges represent where the value of
each variable comes from [12]. In order to calculate the
semantic dataflow match score, it is necessary to acquire the
dataflow graphs of both the translated program and the target
program. The dataflow items are then normalized through a
process of variable renaming. CodeBLEU [31] is an evaluation
metric that evolves from the BLEU [18] by considering the
importance of Weighted N-Gram Match, AST Match Score,
and DataFlow Match Score at the same time.

CodeBLEU = 0.25 · BLEU + 0.25 · BLEUw

+0.25 ·MatchAST + 0.25 ·MatchDF , (3)

1https://github.com/tree-sitter/tree-sitter

where BLEU is standard BLEU [18], BLEUw is the Weighted
N-Gram Match Score, MatchAST is the AST Match Score,
MatchDF is the DataFlow Match Score.

III. THE PROPOSED METHOD

The goal of program translation is to generate a trans-
lated program in the target programming language from the
source program in the source programming language, where
the program translation preserved both lexical and semantic
consistency. Let D = {(x1, y1), (x2, y2) . . . (xn, yn)} denotes
the pairwise set of the program translation dataset, where
{x1, x2, . . . , xn} ∈ X denotes the set of source programs,
{y1, y2, . . . , yn} ∈ Y denotes the set of target programs.

The learning objective of program translation is to learn a
generation function f : X → Y by minimizing the following
regularized objective function:

min
f

∑
i

L(f(xi), yi) + α ·ΨAE + β ·ΨSP, (4)

where L(·, ·) is the loss function to preserve lexical con-
sistency and ΨAE, ΨSP are the auto-encoding and semantic-
preserving regularization terms. The trade-off between L(·, ·),
ΨAE and ΨSP is balanced by α and β.

The overall regularized training framework is presented in
Section III-A. The program translation model is discussed in
Section III-B, as well as the regularization to preserve semantic
consistency is discussed in Section III-C.

A. The Overall Framework

The regularized training approach learns the model from
the objective which consists of the supervised loss function
as well as two regularization terms. The overall framework of
the proposed approach is shown in Figure 2.

The training process of our model includes two phases.
First, only auto-encoding regularization is performed to train
the capacity of the model to reconstruct the program of
the target language. The reconstruction process only involves
programs in the target language, encoded by the target encoder
and decoded by the decoder. As the reconstruction only used
the monolingual translation pairs, it is more effective to train
the model than using the bilingual translation pairs. With the
auto-encoding regularization of the monolingual program in
the target language, the target encoder is trained to be robust to
map the target program into the semantic-enriched latent space
used to guide the following semantic consistency preserving
phase. And the decoder is trained to possess the capability of
generating programs in the target language.

Second, the holistic program translation model is trained
to preserve both lexical and semantic consistency. In this
phase, the end-to-end program translation involves encoding
the source program using the source encoder and decoding
it through the decoder, where the translated program is con-
trasted with the target program in the lexical space of the
target language. The translated target program is subsequently
encoded once again by the target encoder and compared with
the latent vector of the target program within the semantic



Fig. 2: An example framework of PSCPT. The training objective
includes program translation loss preserving lexical consistency, auto-
encoding regularization, and semantic-preserving regularization.

space. Therefore, the token sequences of the target program
offer lexical supervision within the lexical space, while the
latent vectors of the target program provide semantic supervi-
sion within the latent semantic space.

B. Program Translation
The source programs are pre-processed by tokenization into

token sequences. Then the sequences are concatenated and
encoded by the source encoder. Let x, y, and ŷs denote
the source program, the target program, and the translated
program, respectively. The program translation from the source
program to the target program can be defined as the probability
p(y|x) over the translation y by source program x.

The transformer architecture is employed for the model,
wherein the layers utilize a masked multi-head self-attention
operation followed by a feed-forward network. Many works
have shown that the transformer architecture can achieve
promising performance on various language processing
tasks [29], [32], [33]. The encoder is designed to map the
input sequence of tokens into contextual representations, and
the decoder aims to generate the output sequence based on it.
We define Encoders as the source encoder, Encodert as the
target encoder, and Decoder as the decoder to generate the
translated program.

A latent vector zxs is introduced to capture the semantics
of the source program, which is inferred by source encoder
Encoders given source program x.

zxs = Encoders(x). (5)

The general program translation model aims to define a
probability p(ŷs|zxs ,x) over ŷs by the latent vector of source
program zxs . The translated program ŷs generated by the
decoder given zxs is defined as:

ŷs = Decoder(zxs ,y). (6)

The loss function of program translation is based on the
cross-entropy loss [30] to maximize the similarity of the tokens
of the translated program and the target program.

L = −
m∑
i=1

log pDecoder(y
i|zxs ,y<i)), (7)

where m is the length of the translated program.
In the process of testing, the decoded embedding of trans-

lated program ŷs can be fed into the output layers mapped to
tokens by sharing the input embedding layers of the encoder
after a dense layer and tanh as the activation function:

µs = tanh(W s
µŷs + bsµ), (8)

ŷs
token = W sµs + bs. (9)

For one thing, tanh increases the nonlinearity of the model
to improve the representation capability. For another, tanh’s
lower bound prevents the value of µ from being so small that
the model degenerates into a discriminative model.

C. Preserving Semantic Consistency

With the help of regularization terms, we expect to encour-
age the program translation to preserve semantic consistency,
which constrains two aspects. First, auto-encoding regular-
ization is applied to construct the latent space containing
the semantics of a program in the target programming lan-
guage. Second, semantic-preserving regularization is utilized
to preserve semantic consistency by contrasting the semantics
between the translated program and the target program in the
semantic latent space of the target language.

Auto-Encoding Regularization The auto-encoding regular-
ization is proposed to train the encoder to construct a semantic-
enriched latent space and train the decoder to utilize the latent
vector to generate the sequence of the target programming lan-
guage. Let ŷt denote the translated program by auto-encoding.
The target programs are pre-processed by tokenization into
token sequences. Then the sequences are concatenated and
encoded by the target encoder.

A latent vector zyt is introduced to represent the semantics
of the target program in the semantic-enriched latent space,
which is inferred by target encoder Encodert from the y.

zyt = Encodert(y). (10)

The auto-encoding regularization aims to define a proba-
bility p(ŷt|zyt ,y) over ŷt by the latent vector of the target
program zyt . The decoded target program ŷt is defined as:

ŷt = Decoder(zyt ,y). (11)

The auto-encoding regularization based on the cross-entropy
loss [30] to maximize the similarity of the reconstructed target
program and the target program can be written as :

ΨAE = −
m∑
i=1

log pDecoder(y
i|zyt ,y<i), (12)

where m is the length of the translated program.
Semantic-Preserving Regularization The loss function to

preserve the lexical consistency of program translation has
made a remarkable achievement [3], [11], [12]. However,
there may be little obfuscation in lexical that could cause
a significant semantic shift, and simply aligning the tokens
of the translated program and target program at the lexical
level can not tackle the problem. To avoid the significant



semantic shift, we claim that there exists the latent vector
distribution for each program that can be used to appropriately
guide the consistency training at the semantic level. As a
semantic-enriched latent space of the target language has been
constructed by the phase of auto-encoding, we implement the
semantic preserving with the latent vectors of the translated
program and the target program.

The latent vector zys is introduced to represent the semantics
of the translated target program, which is inferred by target
encoder Encodert from the translated target program ŷs.

zys = Encodert(ŷs). (13)

The similarity between the translated program zys and the true
target program zyt in the latent space denotes the ability of
the model to preserve the semantics of the program. Now
we implement the semantic preserving by maximizing the
similarity or minimizing the distance over the latent vectors
zys and zyt . For the target program, Encodert can learn the
semantic distribution of the program in the target programming
language. Therefore, zyt can be regarded as a supervisor of zys
in the semantic-enriched latent space of the target language.
We force zys

∼= zyt by imposing L2-distance loss [34] over the
distance between zys and zyt :

ΨSP = ||zys − zyt ||22. (14)

By constraining the semantic-preserving regularization term,
we can squeeze the latent vector zys into the ground truth of
zyt from all directions in the semantic-enriched latent space.

For more details, the Pseudocode of the training process of
PSCPT is described in Algorithm 1.

IV. EXPERIMENT

This section describes our quantitative experiment on a
widely used dataset and a new dataset collected from practical
applications, in which we study the effectiveness of PSCPT in
program translation described in Section III.

A. Dataset Description

We conduct experiments on the CoST dataset [11], which is
a large and comprehensive dataset to evaluate the performance
of program translation approaches. The dataset consists of
both snippet-level and program-level parallel data from 7
programming languages (i.e., C, C#, C++, Java, Javascript,
PHP, and Python) and up to 42 programming language pairs,
which was collected from the GeeksForGeeks2 website. The
detailed statistics of the dataset are shown in Table I, while the
train, validation, and test sets are split the same as CoST [11].

In order to assess the effectiveness of program translation in
real-world applications, a new dataset is compiled from Leet-
Code3. The dataset contains 115 paired solutions commonly
used in competitions in Java programming language and C++
programming language. The dataset is randomly separated
with a ratio of 1:1 to the train set and test set.

2https://www.geeksforgeeks.org/
3https://leetcode.cn/

Algorithm 1: Pseudocode of PSCPT.
Input: x, y are input of the source program and

target program. α, β, and auto num are hyper
parameters, where auto num is number of
epochs for auto-encoding. opt is the optimizer.

1 for epoch in range(epochs) do
2 for (x, y) in loader do
3 zyt ← Encodert(y)
4 ŷt ← Decoder(zyt ,y)
5 if epoch ≤ auto num then
6 G← ∇θ(ΨAE(ŷt,y)
7 else
8 zxs ← Encoders(x)
9 ŷs = Decoder(zxs ,y)

10 zys ← Encodert(ŷs)
11 G← ∇θ(L(ŷs,y) + α(ΨAE(ŷt,y)) +

β(ΨSP (z
y
s , z

y
t ))

12 end
13 Update θ
14 θ ← opt(θ,G)
15 end
16 end

TABLE I: The statistic of the CoST dataset. The upper triangle (in
normal font) shows the number of parallel snippets, and the lower
triangle (in bold font) shows the number of parallel programs. Py is
short for Python, and JS is short for Javascript.

Lang C C# C++ Java JS PHP Py

C - 2123 2188 2135 1232 700 1779
C# 273 - 13326 13905 7601 3192 11404

C++ 267 1442 - 13929 7596 3165 11930
Java 281 1495 1497 - 7729 3194 11713
JS 196 994 996 1009 - 2917 7165

PHP 135 552 548 552 512 - 545
Py 263 1383 1419 1417 962 545 -

B. Experimental Settings

We choose the following state-of-the-art program translation
methods as baselines:
• Naı̈ve Copy: A direct copy from the source program to

the output of the translation, which denotes how similar the
source language and the target language are.

• DOBF [35]: A pre-training objective for programming
languages, which leverages the structural aspect of pro-
gramming languages and recovering the original version of
obfuscated source code.

• CodeBERT [29]: A bimodal pre-training model, trained
with a hybrid objective function that incorporates the pre-
training task of standard masked language modeling and
replaced token detection.

• GraphCodeBERT [12]: A pre-trained model for the pro-
gramming language that considers the inherent structure of
code using data flow in the pre-training stage to encode the
relationships between variables.

• MusT-PT [11]: An effective program translation technique



TABLE II: Performance evaluation in terms of BLEU on the CoST dataset, where GCBERT is short for GraphCodeBERT.

Snippet Level Program Level

Lang Method C C# C++ Java JS PHP Py C C# C++ Java JS PHP Py

C

Naive Copy - 68.88 85.58 69.17 54.85 37.48 37.84 - 68.74 85.02 69.34 53.90 38.1 36.09
DOBF - 39.38 40.17 41.57 33.54 34.51 17.93 - 27.64 20.90 27.15 20.77 24.15 25.87

CodeBERT - 51.92 60.84 51.70 40.57 34.49 31.49 - 34.41 33.64 33.75 29.90 29.32 27.34
GCBERT - 28.99 35.78 30.48 21.59 20.46 14.30 - 41.51 47.48 41.82 27.44 35.64 35.51
MusT-PT - 80.68 88.58 79.24 80.35 82.94 66.49 - 78.39 84.92 76.84 66.13 70.62 55.71
PSCPT - 86.70 82.51 80.02 80.76 74.44 76.72 - 80.10 86.53 78.97 80.91 81.99 69.51

C#

Naive Copy 68.91 - 67.29 78.13 58.90 35.01 36.49 68.74 - 67.51 78.69 57.61 35.55 34.62
DOBF 38.33 - 38.94 47.84 28.70 49.32 25.14 26.38 - 27.50 31.63 23.62 34.90 22.94

CodeBERT 52.65 - 79.28 83.90 76.99 68.62 64.72 34.93 - 65.74 80.11 53.72 45.67 47.14
GCBERT 28.23 - 84.34 80.46 63.70 50.70 53.39 30.69 - 81.96 90.74 79.37 67.86 71.81
MusT-PT 81.12 - 85.34 85.80 82.74 81.64 71.11 78.78 - 84.72 87.76 70.00 70.66 62.03
PSCPT 87.19 - 85.98 87.74 83.99 78.31 72.80 83.84 - 87.23 93.99 82.27 85.95 74.66

C++

Naive Copy 85.66 67.33 - 67.32 55.44 37.68 36.92 85.02 67.51 - 67.38 54.07 38.47 34.89
DOBF 43.32 42.25 - 42.03 40.01 49.29 25.77 31.84 37.43 - 48.70 34.05 15.67 23.73

CodeBERT 63.24 77.21 - 78.39 75.10 70.75 68.92 45.57 64.15 - 56.47 48.65 40.59 56.73
GCBERT 32.30 81.89 - 69.18 61.26 52.00 62.92 27.21 82.79 - 81.89 76.05 71.13 77.35
MusT-PT 87.55 82.98 - 80.27 81.01 83.29 71.20 84.20 81.15 - 79.15 68.85 71.18 64.10
PSCPT 84.42 83.72 - 82.39 81.79 81.82 75.79 86.38 87.56 - 87.71 80.86 84.49 81.79

Java

Naive Copy 69.14 78.03 67.25 - 57.33 33.82 35.50 69.40 78.77 67.48 - 55.99 33.66 33.60
DOBF 39.21 44.26 38.80 - 40.23 48.87 24.83 32.23 65.02 22.01 - 55.78 35.75 24.90

CodeBERT 54.98 86.02 79.14 - 78.54 70.21 66.41 46.85 80.88 69.88 - 55.15 47.66 48.56
GCBERT 28.80 82.07 70.70 - 64.75 51.35 53.73 39.86 91.36 83.97 - 80.12 67.39 73.35
MusT-PT 81.16 90.13 85.23 - 81.87 80.39 70.06 78.71 89.93 84.28 - 69.53 69.83 61.12
PSCPT 81.32 91.60 85.32 - 83.42 80.93 72.01 80.29 93.22 88.71 - 84.07 86.13 79.41

JS

Naive Copy 54.58 58.61 55.29 56.61 - 30.44 41.58 53.00 56.70 53.29 54.44 - 31.53 39.77
DOBF 33.16 41.50 39.91 44.16 - 46.93 24.05 22.13 38.06 20.69 37.78 - 26.03 21.21

CodeBERT 40.93 75.38 73.83 74.58 - 63.85 60.99 32.88 58.43 50.42 60.13 - 46.14 44.34
GCBERT 21.69 61.98 60.37 63.08 - 47.72 43.25 28.04 76.27 75.22 75.94 - 62.17 65.83
MusT-PT 78.54 78.91 78.95 78.03 - 78.69 66.47 70.20 73.32 73.01 73.39 - 76.44 63.88
PSCPT 79.14 80.38 80.58 80.84 - 79.12 66.84 72.69 83.51 77.11 80.57 - 79.45 77.49

PHP

Naive Copy 37.46 34.99 37.64 33.85 30.66 - 23.67 38.10 35.55 38.47 33.61 32.01 - 23.04
DOBF 25.78 40.88 38.30 42.98 38.11 - 25.64 17.62 31.95 30.18 25.88 25.89 - 20.80

CodeBERT 30.06 65.67 67.68 64.02 62.06 - 57.01 30.82 47.14 43.04 45.83 43.45 - 39.42
GCBERT 14.41 42.45 43.86 44.04 38.05 - 35.85 25.38 61.13 61.49 59.39 53.15 - 59.73
MusT-PT 76.67 77.96 79.41 76.42 77.64 - 69.34 67.88 70.34 70.04 67.30 73.54 - 63.97
PSCPT 76.87 78.25 76.87 79.91 71.54 - 69.72 79.00 84.56 83.76 83.58 81.71 - 78.01

Py

Naive Copy 37.77 36.42 36.90 35.24 41.53 23.59 - 35.74 34.31 34.62 33.00 39.79 22.85 -
DOBF 28.77 34.07 36.23 33.48 30.71 45.68 - 15.47 29.22 24.99 35.64 27.31 28.21 -

CodeBERT 35.82 61.50 71.06 65.99 62.34 63.73 - 53.17 49.16 57.63 52.93 52.30 45.69 -
GCBERT 21.75 48.04 55.60 47.63 39.97 44.68 - 28.24 62.08 69.28 63.33 52.79 59.76 -
MusT-PT 70.64 72.35 75.37 70.89 70.46 75.49 - 58.70 63.23 66.16 64.57 66.47 70.90 -
PSCPT 77.05 71.62 76.77 71.52 71.34 76.55 - 69.77 81.12 75.76 80.26 72.74 77.94 -

TABLE III: Scalability evaluation of translation backbone in terms of BLEU, where PSC is short for Preserving Semantic Consistency.

Model Java-Py Py-Java Java-C++ C++-Java Java-C# C#-Java Py-C++ C++-Py Py-C# C#-Py C++-C# C#-C++

LSTM 13.22 17.90 22.35 19.14 12.58 16.17 20.16 13.82 16.93 13.53 18.43 20.81
LSTM+PSC 13.47 19.43 22.56 21.25 16.43 19.35 21.39 14.05 17.81 14.12 24.87 22.56

TransCoder 24.98 21.98 30.09 30.42 44.85 29.40 23.03 23.52 40.40 18.81 41.91 25.30
TransCoder+PSC 39.50 35.64 49.13 57.10 65.86 63.49 41.67 38.68 52.99 38.34 59.45 54.07

Transformer 31.22 38.15 44.38 43.93 47.34 45.60 37.42 33.90 36.91 32.64 45.32 42.65
Transformer+PSC 47.82 53.72 57.39 57.24 57.61 57.69 55.61 48.69 53.35 46.56 57.02 57.53

CodeBERT 48.56 52.93 69.88 56.47 80.88 80.11 57.63 56.73 49.16 47.14 64.15 65.74
PSCPT 79.41 80.26 88.71 87.71 93.22 93.99 75.76 81.79 81.12 74.66 87.56 87.23

that utilizes multilingual languages and exhibits strong
generalizability enhances the performance of translation,
particularly for low-resource languages.

To compare with these baselines, we follow the best hyper-
parameters suggested in their studies. For hyper-parameters in
our method, the numbers of transformer layers of the encoder
and decoder are set as 12 and 6, respectively. The model
dimension and attention heads in transformer layers are set as
768 and 12. To accelerate the training process, the parameters
of CodeBERT [29] are utilized to initialize the encoder. The

batch size, the number of training epochs, and the trade-off
hyper-parameters α, β, and auto num are determined based
on the performance of the validation set, which is set as 64,
200, 2, 3, and 50 in the experiment. Then, the training set and
the validation set are mixed up to train the model. Following
MusT-PT [11], the snippet-level training set is utilized to
enhance the program-level translation. This process is repeated
for 3 times and the average performance on the test set is
reported. Moreover, the comments in the source code are
kept in the dataset the same as Transcoder [3], which can



TABLE IV: The effectiveness of the auto-encoding and semantic-preserving regularization terms for program translation, where SP is short
for Semantic-Preserving, and AE is short for Auto-Encoding. The ablation study is dependent on the configuration of three hyper-parameters,
α, β, and auto num. When the auto-encoding is ablated, the hyper-parameters α and auto num are both set to zero. When the semantic-
preserving is ablated, the hyper-parameters β are set to zero.

SP AE Java-Py Py-Java Java-C++ C++-Java Java-C# C#-Java Py-C++ C++-Py Py-C# C#-Py C++-C# C#-C++

✗ ✗ 48.65 52.93 69.88 56.47 80.88 80.11 57.63 56.73 49.16 47.14 64.15 65.74
✓ ✗ 55.83 55.94 80.39 77.52 89.59 88.81 60.84 64.31 53.64 53.32 71.99 78.40
✗ ✓ 73.24 76.55 85.06 84.98 91.86 91.06 72.80 71.95 72.72 67.18 83.19 82.37
✓ ✓ 79.41 80.26 88.71 87.71 93.22 93.99 75.76 81.79 81.12 74.66 87.56 87.23

increase the number of anchor points across languages. The
AdamW [36] optimizer is used to update model parameters
with the initial learning rate 1e-5. The linear weight decay is
used for scheduling the learning rate. All the experiments are
conducted with the NVIDIA Tesla A100 with 128GB RAM
on the Ubuntu operating system.

C. Experiment Results Compared with Other Methods

In the experiment, we use the BLEU [18] score as the
evaluation metric to evaluate the n-gram overlap between the
translated code and the ground-truth target code, which is the
most widely used metric in program translation [11], [12],
[35], [37]. A higher BLEU score indicates better evaluation
performance, which varies from 0 to 100 as a percentage.
Table II shows the experimental results. It can be observed
that PSCPT performs significant performance gains over the
state-of-the-art approaches on most of the translation pairs,
especially at the program level.

At the program level, the BLEU scores of PSCPT are 32.28
higher than the naive copy on average of 42 pairs. Compared
with the state-of-the-art, PSCPT achieves more than 9.40%
improvement on average in terms of BLEU score in program
translation. Especially, compared with MuST [11], PSCPT
reduces the error rate by 24.46%, 31.30%, 32.00%, 32.72%,
23.99%, 37.40%, and 28.25% on average in terms of BLEU
score in program translation from the source program C, C#,
C++, Java, Javascript, PHP, and Python, respectively.

At the snippet level, the BLEU scores of PSCPT are
29.07 higher than the naive copy on average of 42 pairs.
Compared with the start-of-the-art method MusT [11], PSCPT
has demonstrated superior performance on approximately 90%
pairs, which has shown the effectiveness of preserving seman-
tic consistency in translation.

In conclusion, the results have conclusively demonstrated
that preserving semantic consistency plays a crucial role
in enhancing the performance of code translation. Notably,
the improvement in performance is more significant at the
program level than the snippet level, highlighting that it is
more important for the long program to focus on the semantic
information of programs.

D. Scalability Evaluation of Translation Backbone

We further evaluate the scalability of the framework
in different backbones for program translation, including
LSTM [38], Transformer [39], Transcoder [3], [40], [41],

Fig. 3: Performance of PSCPT with different auto-encoding epochs
in terms of BLEU. The source and target programming languages in
the translation are opposed in the two figures.

and BERT [29]. As shown in Table III, the transformer-
based model is more effective than the LSTM-based model
in program translation, which captures internal dependencies
within the input sequence while allowing the model to es-
tablish long-range relationships between different positions.
In addition, supervised models tend to outperform unsuper-
vised models. Supervised models directly learn and model
the mapping between source and target programs by lever-
aging annotated data. In contrast, unsupervised models must
discover this mapping without explicit guidance, potentially
increasing the difficulty of the problem. No matter based on
any backbone, the performance of program translation has
significant improvement by preserving semantic consistency
on various translation pairs, which illustrates the scalability of
our approach in program translation.

E. Ablation Study of Components of PSCPT

We evaluate the effectiveness of the auto-encoding and
semantic-preserving regularization terms by trade-off hyper-



TABLE V: Performance evaluation of CodeBERT, PSCPT, and text-davinci-003 on the dataset collected from practical application in terms
of N-Gram Match, Weighted N-Gram Match, AST Match, Dataflow Match, CodeBLEU, and Accuracy metrics.

Lang Model N-Gram Match (BLEU) Weighted N-Gram Match AST Match Dataflow Match CodeBLEU Accuracy

Java-C++

CodeBERT 85.40 86.33 85.70 71.28 82.18 43.48
text-davinci-002 67.00 67.01 36.75 33.68 51.11 17.85
text-davinci-003 80.53 81.16 59.47 46.09 66.81 20.02

PSCPT 89.69 90.16 86.56 71.71 84.53 56.52

C++-Java

CodeBERT 85.05 86.04 73.66 66.64 77.85 39.13
text-davinci-002 74.06 74.11 46.70 42.01 59.22 19.46
text-davinci-003 86.77 87.27 73.01 56.81 75.97 19.17

PSCPT 88.77 89.34 84.92 75.51 84.63 47.83

(a) N-Gram (b) AST Match (c) Dataflow Match (d) CodeBLEU

Fig. 4: Box plots of the performance of CodeBERT, PSCPT, and text-davinci-003 in terms of BLEU, AST Match, Dataflow Match, and
CodeBLEU scores in the direction from Java to C++. The value of the Metrics range from 0 to 1, and higher is better. Dashed blue lines
indicate the median of the scores, and solid red lines denote the mean of the scores.

parameters α, β, and auto num. The ablation study depends
on the configuration of three hyper-parameters, α, β, and
auto num. When the auto-encoding is ablated, the hyper-
parameters α and auto num are both set to zero. When the
semantic-preserving is ablated, the hyper-parameters β are set
to zero. Comparison between the first and second lines in
Table IV illustrates the effectiveness of semantic-preserving
regularization. And the comparison between the first and the
third line in Table IV illustrates the efficacy of auto-encoding
regularization. Moreover, a comparison between the second
and fourth lines in Table IV indicates that a semantic-enriched
latent space constructed by auto-encoding regularization is
the premise of semantic-preserving regularization between
translated and target programs.

We further evaluate the sensitivity of the auto-encoding
with a gradual increase in the auto num for auto-encoding.
As shown in Figure 3, along with epochs of auto-encoding
increase, the performance of PSCPT will first rise and then
decline in terms of BLEU score. The rising curve proves
again that bad auto-encoding will decrease the learning of
the semantics of programs. The decline curve shows that the
model is overfitting to the noise in the training data.

F. Evaluation of PSCPT in Practical Application

In the experiment, the lexical similarity-based met-
ric (BLEU, Accuracy), syntactic similarity-based metric (AST
Match Score), and semantic similarity-based metric (Dataflow
Match Score, CodeBLEU) are calculated to evaluate the per-
formance between the translated and the ground-truth target
code. Compared with the CodeBERT and PSCPT in Table V
of the experimental results, we observe that the major im-
provement comes from preserving semantic consistency on

all sorts of metrics. Especially, the metrics are improved by
12.02% and 2.82% on BLEU and CodeBLEU in the Java-C++
direction and 27.67% and 8.87% in BLEU and CodeBLEU in
the C++-Java direction.

The commercial closed large language models are also
evaluated on the dataset, where the performance of text-
davinci-002 is weaker than text-davinci-003. We invoke the
text-davinci-002 and text-davinci-003 API4 through its official
Python bindings. As the large language models can not be fine-
tuned, the prompts are given to elicit desired responses for the
program translation. In addition, we can observe that the per-
formance of large language models is comparable with PSCPT
on BLEU metric, but has obviously lower results on AST
Match and Dataflow Match metrics. Although large language
models have shown impressive abilities in the generation, there
is also no guarantee that the translation will be strictly correct,
especially when the program is long. They are predicted and
generated by learning statistical regularities in large amounts
of data. Therefore, if there are errors, biases, or inaccuracies in
the training corpus, the model may replicate these problems
during generation. Moreover, the positive linear correlations
between accuracy and other metrics are not significant since
accuracy is very sensitive to the order of the tokens and must
require the translated program and target program exactly the
same in the order of tokens.

Figure 4 exhibits the results of box plots of CodeBERT,
PSCPT, and text-davinci-003 for BLEU, AST Match, Dataflow
Match, and CodeBLEU scores in the direction from Java to
C++ for every program. The box plots present the distribution
of the results in lexical, syntactic, and semantic metrics. Over-

4https://openai.com/api/



Fig. 5: The case of program translation from Java to C++. The program is to construct and return the binary tree, given two integer arrays
preorder and inorder where preorder is the preorder traversal of a binary tree and inorder is the inorder traversal of the same tree. The top is
the source program in Java. The bottom left, bottom middle, and bottom right are the translated programs in C++ translated by CodeBERT,
text-davinci-003, and PSCPT, respectively.

all, PSCPT has a higher upper bound than CodeBERT and text-
davinci-003 on all metrics. Compared with text-davinci-003,
we can see that PSCPT receives higher scores in AST Match
and Dataflow Match. It indicates that programs translated by
PSCPT tend to be more similar to target programs at the
syntactic and semantic levels than text-davinci-003.

G. Qualitative Analysis

For qualitative analysis of our approach, we present the
case study containing the source program, and target programs
translated by CodeBERT, PSCPT, text-davinci-003, respec-
tively, as shown in Figure 5. The top is the source program
in Java. The bottom left, bottom middle, and bottom right are
the translated programs in C++ translated by CodeBERT, text-
davinci-003, and PSCPT, respectively. In this case, the aim of
the Java program is to construct and return the binary tree,
given two integer arrays preorder and inorder where preorder
is the preorder traversal of a binary tree and inorder is the
inorder traversal of the same tree. The program translated
by PSCPT tends to be more accurate and more readable
than the CodeBERT. Moreover, the programs translated by
the large language model sometimes contain redundant or
incorrect codes. The input of the “buildTree” function in the
source program only contains two parameters, but four input
parameters are generated from the large language model.

V. CONCLUSION

In this paper, we argue that semantics are crucial for
program translation, which can be used by preserving seman-
tic consistency to improve program translation. We propose
an effective regularized framework for program translation
named PSCPT, which uses auto-encoding regularization to
construct the semantic-enriched latent space and exploit the
semantic-preserving regularization to guide the alignment of
the semantics in program translation. We conduct extensive
experiments in 7 programming languages. Experimental re-
sults show that PSCPT outperforms not only the state-of-
the-art open-source models but also the commercial closed
large language models (e.g., text-davinci-002, text-davinci-
003). Extensive experiments prove that preserving semantic
consistency in program translation is essential and effective.

In future work, we plan to promote preserving semantic
consistency in program translation with more different ap-
proaches. In addition, more studies of preserving semantic
consistency will be exploited in other software domains.
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