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Abstract
In this paper, we address a special scenario of semi-
supervised learning, where the label missing is caused by a
preceding filtering mechanism, i.e., an instance can enter a
subsequent process in which its label is revealed if and only
if it passes the filtering mechanism. The rejected instances
are prohibited to enter the subsequent labeling process due
to economical or ethical reasons, making the support of the
labeled and unlabeled distributions isolated from each other.
In this case, semi-supervised learning approaches which rely
on certain coherence of the labeled and unlabeled distribution
would suffer from the consequent distribution mismatch, and
hence result in poor prediction performance. In this paper, we
propose a Small-Paced Self-Training framework, which iter-
atively discovers labeled and unlabeled instance subspaces
with bounded Wasserstein distance. We theoretically prove
that such a framework may achieve provably low error on the
pseudo labels during learning. Experiments on both bench-
mark and pneumonia diagnosis tasks show that our method is
effective.

1 Introduction
Semi-supervised learning (Chapelle, Schlkopf, and Zien
2006; Zhu et al. 2009), which aims to alleviate the huge
cost of collecting labeled data by exploiting the relatively
large amount of unlabeled data, is raised from real-world
demands. Existing approaches utilize the unlabeled data for
better modeling the data distribution through different ways,
increasing the capability of semi-supervised learning in var-
ious scenarios (Bennett and Demiriz 1999; Nigam et al.
2000; Zhu, Ghahramani, and Lafferty 2003; Tarvainen and
Valpola 2017; Berthelot et al. 2019).

Differing from semi-supervised learning, which usually
considers the labeled data is sampled from the population
distribution with no or neglectable shift, in specific situa-
tions, labeled data may be sampled from a different distri-
bution other than the test distribution, and unlabeled data
sampled from the test distribution can be used for improv-
ing learning. For example, domain adaptation (Ben-David
et al. 2010; Hoffman et al. 2018; Qu et al. 2019) aims to
build models with labeled and unlabeled data from two dif-
ferent but related (source and target) domains. Learning un-
der sample selection bias (Quiñonero-Candela et al. 2008;
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Huang et al. 2006) aims to build models from the data where
the selection of labeled data subjects to some bias or prefer-
ence. The shift between labeled and unlabeled distributions
is usually assumed to be of certain types, e.g., label shift,
covariate shift, concept shift, etc.

In this paper, we focus on a specific type of problem,
where the labeling process is not executed on random in-
stances, but determined by some preceding filtering mecha-
nism. Such a mechanism can be regarded as a deterministic
classification model for predicting if an instance is qualified
to enter the subsequent process, which includes the observa-
tion or production of its ground truth label. If the instance is
rejected by the filtering model, the label remains unrevealed
and will never be known. The filtering mechanism can be a
set of rules, a group of experts, or a machine learning model,
depending on the situation. Such situations can occur in var-
ious fields including financial, medical, marketing, etc., here
we take the lung nodule diagnosis as an example:

When a lung nodule is detected during a CT lung scan,
the doctors decide if the nodule has to be surgically
removed based on some treatment rules. If the nodule
needs surgical removal, the nodule tissue can be collected
during the surgery and then analyzed by the pathologists
under a microscope. In such a case, the property of the
tumor is observed. If the nodule is decided against sur-
gical removal, the patient will have a conservative treat-
ment, and the nodule property remains unrevealed since
the nodule tissue is not available for biopsy. The doctors
“filter” the data to be “labeled” according to the treat-
ment rules, which makes the data suffer label missing
for building machine learning models for other tasks like
nodule classification.

Such a filtering mechanism makes the distribution of the
labeled data different from the overall data distribution. A
hard filtering boundary isolates the labeled distribution and
the unlabeled distribution, making it difficult to learn the de-
cision boundary for the target task on the unlabeled side,
as shown in Figure 2. Here we remark that the problem
we face can be regarded as some sort of sample selection
bias, but the mainstream of research in this direction does
not interested in such exceptional case that the labeled and
unlabeled distribution do not overlap in their support. In-
stead, the condition that the support of biased labeled data
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Figure 1: Demonstration of the labeling process governed by a filter.
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Figure 2: Demonstration of a semi-supervised dataset with
support isolation.

distribution covers the support of the population distribu-
tion is generally required, and the distribution density ratio
has to be bounded (Shimodaira 2000; Huang et al. 2006;
Quiñonero-Candela et al. 2008; Sugiyama, Krauledat, and
Müller 2007). Such an issue also prevents us from solving
it as a domain adaptation problem by regarding the labeled
and unlabeled side as two domains, as it has been shown
that learning invariant representations can be unhelpful un-
der label shift and shift in the support (Ben-David and Urner
2012; Johansson, Sontag, and Ranganath 2019; Li et al.
2020; Zhao et al. 2019).

In this paper, we try to tackle the problem under the
framework of semi-supervised learning. We propose Small-
Paced Self-Training framework to address the problem. Self-
training methods recently show great power on tasks in-
cluding semi-supervised learning, domain adaptation, and
unsupervised learning (Lee 2013; French, Mackiewicz, and
Fisher 2018; Hu et al. 2017; Prabhu et al. 2020; Xie et al.
2021). Some recent theoretical results reveal the insights
of self-training algorithms on specific scenarios, including
gradual domain adaptation (Kumar, Ma, and Liang 2020),
and self-training with consistency regularization (Wei et al.
2021). We modify self-training by adding a subset selection
mechanism to ensure the pseudo-labeler models make prov-
ably low error. To be concrete, Small-Paced Self-Training
framework selects a pseudo-labeled subset for training the
pseudo-labeler models, and produces pseudo labels only on
an unlabeled subset whose Wasserstein distance with the
training set is bounded. Intuitively, this strategy learns the
concept in a ‘small-paced’ way to avoid the performance
degradation caused by the distribution mismatch. Our the-

oretical analysis shows that by restricting the Wasserstein
distance of the training distribution and pseudo-labeled dis-
tribution, Small-Paced Self-Training produces pseudo-labels
with low error provably. Our contributions are two folds:
1. We propose Small-Paced Self-Training framework for

semi-supervised learning with support isolation prob-
lem, and theoretically show that our Small-Paced Self-
Training helps the learning under support isolation.

2. We provide a practical algorithm of the Small-Paced
Self-Training framework, and empirically show the ef-
fectiveness of our algorithm on benchmark and real-
world tasks.

2 Problem Setup
Consider the problem of binary classification, let PX,Y de-
note the underlying data joint distribution overX×Y , where
X ⊆ Rd is the feature space and Y = {+1,−1}. Let PX be
the marginal distribution of X . In ordinary semi-supervised
learning, the labeled data and unlabeled data

DL = {(xi, yi)}i=1,...,n ∼ PX,Y , and

DU = {(xj)}j=n+1,...,n+m ∼ PX ,

are considered sampled i.i.d. from the same distribution P .
The problem we face is that a filtering mechanism gov-

erns the labeling process, making the sampling of labeled
data and unlabeled data no longer i.i.d., but conditioned on
the filter’s decision. For an instance X ∼ PX , random vari-
able S = g(X) where g : X → {0, 1} is the determin-
istic filter function which indicates if we are able to ob-
serve the label of X . Such filter function defines a parti-
tion {XL,XU} of X . The labels of the instances in subspace
XL = {X ∈ X |g(X) = 1} are all observed and the in-
stances in subspace XU = {X ∈ X |g(X) = 0} are all unla-
beled. In this situation, the labeled set DL and unlabeled set
DU are sampled from different conditional distributions:

DL = {(xi, yi)}i=1,...,n ∼ PX,Y |S=1 , and

DU = {(xj)}j=n+1,...,n+m ∼ PX|S=0 ,

and the support of the two distributions are disjoint, or iso-
lated. Particularly, in this paper, we consider the filtering
function g(·) as a deterministic machine learning model, or
a rule-based decision process. We do not require the knowl-
edge of g(·) other than the dataset and labels.



In general, since XL and XU are disjoint, we obtain no
knowledge on conditional probability PY |X onXU by learn-
ing on DL, and thus the model cannot generalize to XU .
However, the underlying structure of the data distribution
may be captured to enable learning. In this paper, we as-
sume the data distribution satisfies some assumptions on its
connectivity and separability. These assumptions are com-
monly used in recent theory analysis for semi-supervised
learning, unsupervised learning, and domain adaptation ap-
proaches (Wei et al. 2021; Liu, Wang, and Long 2021),
and have been shown to hold for common data distribution
including mixtures of isotropic Gaussians and mixtures of
manifolds (Wei et al. 2021).

Definition 1 ((a, c)-expansion). The class-conditional dis-
tribution Pi satisfies (a, c)-expansion if for all V ⊆ X with
Pi(V ) ≤ a, the following holds:

Pi(N (V )) ≥ min{cPi(V ), 1} , (1)

where

N (x) = {x′ | ∥x− x′∥2 ≤ r} , (2)
N (V ) = ∪x∈VN (x) . (3)

And if Pi satisfies (a, c)-expansion for both classes, then we
say P satisfies (a, c)-expansion.

Definition 2 ((r, µ)-separation). For a distribution P , an
instance x ∼ P , with at most probability µ, there exists
x′ ∼ P belongs to the different class of x and x′ ∈ N (x).

Assumption 3 (Expansion). We assume that the population
distribution P satisfies (0.5, c)-expansion on X for some
c > 1.

Assumption 4 (Separation). We assume that the population
distribution P satisfies (r, µ)-separation for some small µ >
0.

Remark 5. The above problem setting belongs to a special
case of sample selection bias, in which the sampling pro-
cess of the labeled data subjects to some bias that can be
described as a random rejection variable S. Let S = 1 rep-
resents the label is revealed and S = 0 represents the la-
bel is unrevealed. Then, the training set is sampled from
PX,Y |S=1 and the unlabeled set is sampled from PX . Ex-
isting researches on this topic require the condition:

P (S = 1|X) > 0

holds on the region where P (X) > 0. With this condition,
the propensity score function s(X) = P (S = 1|X) can
be modeled and used for reweighting the instances. In our
setup, P (S = 1|X) = g(X) is deterministic and rang-
ing discrete in {0, 1}, and the goal is to build a model of
P (Y |X,S = 0) with the help of the unlabeled data. The ex-
isting line of research cannot be adapted to solve the problem
of this paper.
Remark 6. Our problem setup is close to domain adaptation,
where we have labeled data DS from the source domain and
unlabeled DT from the target domain. Researches on this
topic generally assume the class prior remains consistent in
the two domains (or at least not vary significantly), and try

to find a mapping function to map the source domain and
the target domain into one same feature space. The problem
we face is different to domain adaptation in two aspects: 1)
in our setup, the class prior on the labeled and unlabeled
side may vary arbitrarily, and their support does not over-
lap; and 2) there is not any conceptual reasonable invariant
representation of the labeled and the unlabeled data. These
differences make it difficult to adapt theories and practices
to our setup (Zhao et al. 2019; Shu et al. 2018).

3 Small-Paced Self-Training
Standard self-training algorithms iteratively make predic-
tions on the unlabeled data, and then add the confident
predictions into the labeled set to refine the model. It is
prone to failure when the labeled and unlabeled data dis-
tributions change significantly. We point out that 1) standard
self-training typically uses all (pseudo-)labeled data, with or
without weighting, to build the model for pseudo-labeling
more instances, and 2) all the unlabeled instances are can-
didates for pseudo-labeling. Our proposed small-paced self-
training differs from standard self-training in these two as-
pects.

3.1 Small-Paced Self-Training Framework
The main challenge of the problem is that the labeled distri-
bution and the unlabeled distribution have disjoint support,
hence when producing pseudo labels, the distribution dis-
crepancy of PX,Y |S=0 and PX,Y |S=1 can be large, and the
class prior between the two distributions can change arbi-
trarily.

To tackle this problem, the main idea of small-paced self-
training is to ‘break’ the unlabeled distribution into small
component distributions, so that at each iteration, we can
find some labeled instances that the unlabeled ones are
‘closed’ to, and the model trained on the labeled instances
can be provably adapted to the unlabeled ones. We use large
margin models as the base model in each iteration. Intu-
itively, when unlabeled distribution drifts away from the la-
beled distribution only at a small pace, the unlabeled in-
stances get close to the classification border but are unlikely
to get across the border if the classifier has a large margin to
the labeled instances.

Formally, at iteration t, we denote the subspace remaining
unlabeled as X (t)

U and the pseudo-labeled subspace as X (t)
L .

Instead of training model with instances in X (t)
L and gener-

ating pseudo-labels on instances in X (t)
U , we instead select a

subset of X (t)
L and a subset of X (t)

U , namely X̃ (t)
L and X̃ (t)

U .
We define the component distributions P (t) = P (x|x ∈
X̃ (t)

L ) and Q(t) = P (x|x ∈ X̃ (t)
U ). If all unlabeled data are

pseudo-labeled in T iterations, we have:

PS=0 = P (x|x ∈
T⋃

t=1

X̃ (t)
U ) . (4)

Distribution distance. To make the pseudo-labels on Q(t)

reliable, in iteration t, we want to find some labeled in-
stances from some component distribution P (t), such that



the distributional distance between P (t) and Q(t) is small
enough, and consequently the model f trained on P (t) can
produce predictions on Q(t) with guaranteed performance.
However, given the labeled and unlabeled distribution iso-
lated in their supports, distribution distance measures like
KL-divergence and JS-divergence cannot be defined. A rea-
sonable choice here to consider is Wasserstein distance. In
this paper, we use Wasserstein-infinity distance of the distri-
butions:

W∞(P,Q) = inf
T
(sup

x
∥T (x)− x∥2) , (5)

T : Rd → Rd , T#P = Q , (6)

where T#P denotes the push-forward measure of P by some
measurable mapping T such that T#P (A) = P (T−1(A))
for every set A ⊆ Rd. Intuitively, W∞ gives the upper bound
of the distance of moving points to match the distribution
P and Q. Let ρ(P,Q) be the maximum W∞ on the class
conditional distributions:

ρ(P,Q) = max
y∈{+1,−1}

(W∞(PX|Y=y, QX|Y=y)) . (7)

Such measure bounds the maximum moving distance of
conditional mapping from Q to P .

Base models. We consider both linear and deep large mar-
gin models for classifying the component distributions. For
linear base models f(x) = w⊤x+ b, we optimize ramp loss
with ℓ2 regularization, which produces large margin clas-
sifiers and is shown robust to the outliers. Notice that al-
though the entire dataset is not linearly separable, our algo-
rithm breaks the whole dataset into separable subsets and
produces reliable pseudo labels gradually, so that the linear
base models do not restrict our algorithm to simple tasks.
The ramp loss is formalized as:

ℓr(z) = min(max(1− z, 0), 1) . (8)

For deep models, we use Large Margin Deep Networks (El-
sayed et al. 2018) as the base models, which penalize the de-
cision boundary going through the neighborhood of instance
within distance δ:

ℓm(x, y) = max(0, δ + ydf,x) , (9)

where df,x is the distance of instance x from the decision
boundary:

df,x = min
ξ
∥ξ∥2 (10)

s.t. f(x+ ξ) = 0 . (11)

Both linear and deep models we choose here enlarge the
classification margin. For the linear model, by regularizing
the ∥w∥ ≤ R for some 1

R > δ, it penalizes the instances
within the margin of distance at least δ from the classifica-
tion border. For the deep model, the large margin loss also
pushes the decision boundary away from the instances by a
distance of at least δ.

Overall framework. Our framework requires the con-
structed component distributions at each step to meet the
following conditions:

1. class prior consistent: P (t)
Y = Q

(t)
Y ;

2. small shifting: the distributional distance of labeled and
unlabeled distributions is bounded, i.e., ρ(P (t), Q(t)) ≤
δ;

3. α∗-separation: P (t) and Q(t) satisfy α∗-separation for
some small α∗ > 0, i.e., there exists some classifier f∗

which can achieve low ramp loss on P (t) and Q(t).

The following theorem states that as long as the remaining
unlabeled distribution contains instances from two classes,
the component distributions that meet the above require-
ments exist.

Theorem 7. Suppose the population distribution satisfies
(0.5, c)-expansion and (r, µ)-separation. If 0 < PY (X|X ∈
X (t)

U ) < 1 for Y ∈ {+1,−1}, then P (t) and Q(t) that satisfy
the class balanced, small shifting, and α∗-separation condi-
tions exist.

The proof of the Theorem 7 is provided in Appendix A.
Based on this Theorem we can self-train the model till we
cannot find any component distributions, and label the re-
mainder unlabeled instances as some single class.

Practically, instead of explicitly finding the component
distributions P (t) and Q(t), we select a pseudo-labeled in-
stance set D̃(t)

PL ∼ P (t) and D̃
(t)
U ∼ Q(t). Here we give an

algorithmic summary of the small-paced self-training frame-
work in Algorithm 1. We will first conduct theoretical anal-
ysis in Section 3.2 and then practical implementation of this
framework in Section 4.

Algorithm 1: Small-Paced Self-Training Framework
repeat

Choose subset D̃(t)
PL ∼ P (t) and D̃

(t)
U ∼ Q(t).

Train f (t) on D̃
(t)
PL with a large margin.

Select {x ∈ D̃
(t)
U |f(x) ≥ θ} as the pseudo-labels.

until No unlabeled data remaining.

3.2 Theoretical Analysis
In this section, we conduct theoretical analysis of our small-
paced self-training framework.

In step t, we regard the training subset D̃(t)
PL as drawn

from P (t), and the generated pseudo-labeled instances D̃(t)
U

as drawn from Q(t). Our algorithm makes sure that during
the self-training process, ρ(P (t), Q(t)) ≤ δ, and the margin
on B′ is large, i.e., f(B′) > R.

We next show that the small-paced self-training frame-
work helps in learning. We first conduct some lemmas, and
then give the main Theorem 11. The analysis is based on the
linear base model case.

Lemma 8. Given n samples D from a joint distribu-
tion P over inputs Rd and labels {−1,+1}, and suppose



EX∼P [∥X∥22] ≤ B2. Let f̂ and f∗ be the empirical and
population minimizers of the ramp loss respectively:

f̂ = argmin L(f,D) , (12)
f∗ = argmin L(f, P ) , (13)

where

L(f,D) =
∑

x,y∈D

(ℓr(yf(x))) , (14)

L(f, P ) = EX,Y∼P [ℓr(Y f(X))] . (15)

Then with probability at least 1− δ,

L(f̂ , P )− L(f∗, P ) ≤
4BR+

√
2 log 2/δ√
n

. (16)

This lemma bounds the generalization error of a regu-
larized linear classifier. The detailed proof is given in Ap-
pendix B.1, which follows the general analysis with Rade-
macher complexity.
Lemma 9. If f is a linear model with ∥w∥ < R, ρ(P,Q) =
ρ < 1

R , and the class priors on P and Q are the same, i.e.,
P (Y ) = Q(Y ), then Err(f,Q) ≤ 2

1−ρRL(f, P ).

This lemma tells us that if we train a linear classifier f on
P , the error rate on Q can be bounded by the ramp loss on
P , even if the ramp loss L(f,Q) can be large. Intuitively,
since the shift between P and Q is small, and f is a large
margin classifier trained on P , the sample from Q may go
into the soft margin of f but is not likely to go across the
border. The proof is given in Appendix B.2.
Lemma 10. Given random variables X , Y , Y ′ with joint
distribution P , where X denotes the instance, and Y and
Y ′ denote the ground truth labels and the pseudo labels. If
the probability of the pseudo label being incorrect P (Y ̸=
Y ′) ≤ ϵ, then for any f(x) = w⊤x + b, we have that
L(f, PXPY |X) < L(f, PXPY ′|X) + ϵ.

This lemma tells that if the pseudo labels have small error
w.r.t. the true labels, then we can learn a classifier with low
ramp loss by fitting the pseudo labels. The proof is given in
Appendix B.3.
Theorem 11. Given two distributions P , Q with ρ(P,Q) =
ρ < 1

R , and the class priors are the same, i.e., P (Y ) =
Q(Y ). Let f be the pseudo-labeler model which is learned
on pseudo-labeled distribution PXPY ′|X with error proba-
bility P (Y ̸= Y ′) ≤ ϵ. Then about the error of new pseudo
labels on Q we have

Err(f,Q) ≤ 2

1− ρR
(α∗ + ϵ+

4BR+
√
2 log 2/δ√
n

) .

(17)
This theorem can be easily proved by combining the

previous lemmas, and the detailed proof is given in Ap-
pendix B.4. This theorem tells us that by training a pseudo-
labeler with data on P and pseudo-label with small error, the
error rate of the pseudo-labels on Q can be bounded. With
this theorem, we can bound the error rate of the pseudo la-
bels at any step as follows.

Corollary 12. Suppose (P (t), Q(t)) for t = [T ] are se-
lected component distributions that satisfy class balance,
small shift, and linear separation. Letting γ = 2

1−ρR , then
at step t, the new pseudo labels’ error rate is bounded:

Err(f (t), Q(t)) ≤ γt

(
α∗ +

4BR+
√
2 log 2/δ√
n

)
.

(18)

4 Practical Implementation
In this section, we give a practical implementation of the
framework in the agnostic scenario. The detailed algorithm
description is shown in Algorithm 2.

Subset selection. We here describe how to find the in-
stance set D̃

(t)
PL ∼ P (t) for training and D̃

(t)
U ∼ Q(t)

for pseudo-labeling. The problem of finding such subsets
with bounded W∞ distance from two discrete distributions
naturally corresponds to the problem of bipartite matching
of instance pairs with a maximum distance limitation. We
run bipartite graph matching between the pseudo-labeled
and unlabeled data with edges between the nodes (xL, xU )
that d(xL, xU ) < δ. The matched instances have empirical
Wasserstein distance no larger than δ. If the base models are
linear classifiers, an extra linear model f0(x) = w⊤

0 x + b0
is trained on the pseudo-labels of the matched instances.
By selecting an equal number of positive and negative in-
stances with margin ŷf0(x) from large to small while keep-
ing f0(xP ) > f0(xN ), we obtain a linear separable, class
balanced training set D̃(t)

PL. If the base models are deep mod-
els, we skip this step as deep models have stronger ability
of fitting to separate the selected distribution. The pseudo-
labeler model f (t) is then trained on D̃

(t)
PL to enforce the

margin on the training set. If the deep model is used, the
model can be pre-trained on all pseudo-labels and then fine-
tuned on the selected D̃

(t)
PL, as the pre-trainings will not de-

crease but may increase the generalization of the model on
Q(t). The unlabeled instances in D̃

(t)
U are fed into f (t), those

predictions with large margin |f (t)(xU )| > θ will be ac-
cepted as pseudo-labeled data D̃

(t)
U .

Dynamic hyper-parameter choosing. The small-paced
self-training requires the setting of hyper-parameter δ. Intu-
itively, δ controls the extent of the shift of the training P (t)

and test distribution Q(t), and the smaller the distribution
shifts, the better the model generalizes on Q(t). However, a
small δ decreases the size of D̃(t)

PL, making the model perfor-
mance unreliable. To find a proper δ, we search from small
to large in some interval [δ−, δ+] containing δ. We start the
algorithm from some small δ, and perform self-training only
if the size of D̃(t)

PL reaches a lower limit number of instances.
If the training data is too few, the δ is increased by a small
step, and then the small-paced self-training algorithm con-
tinues. Notice that with δ going up, the geometric margin we
require the pseudo labels also goes up correspondingly, thus
the risk of introducing error is low. Generally, for datasets
with normalized features, we search δ in [0.1, 0.5].



Algorithm 2: Small-Paced Self-Training Algorithm
Let t = 1.
repeat

Select (D̃(t)
PL, D̃

(t)
U ) by bipartite matching of

(
D

(t)
PL, D

(t)
U , {(xL, xU )|∥xL − xU∥ < δ}

)
.

if |D̃(t)
PL| < n then increase δ, continue.

(Deep Base Model) Pre-train f (t) with all pseudo-labeled data D
(t)
PL.

(Deep Base Model) Fine-tune f (t) on D̃
(t)
PL.

(Linear Base Model) Train f (t) on D̃
(t)
PL with ramp loss and regularization ∥w∥ < R.

Reject unconfident {xU |f(xU ) < θ} from D̃
(t)
U , accept the reminder as the pseudo-labels.

if |D̃(t)
U | = 0 then decrease θ.

Let t← t+ 1.
until No unlabeled data remaining.

Method ACC AUC F1

MeanTeacher 0.902 (5.5%↓) 0.912 (4.3%↓) 0.887 (5.9%↓)
MixMatch 0.809 (9.4%↓) 0.833 (8.1%↓) 0.799 (9.2%↓)
FixMatch 0.966 (0.4%↓) 0.967 (0.5%↓) 0.958 (0.5%↓)

CST 0.953 (0.5%↓) 0.953 (0.6%↓) 0.942 (0.6%↓)
Self-Training 0.921 (5.6%↓) 0.923 (5.1%↓) 0.917 (5.5%↓)

Small-Paced Self-Training (L) 0.919 (3.6%↓) 0.925 (2.8%↓) 0.942 (4.0%↓)
Small-Paced Self-Training (D) 0.973 (0.2%↓) 0.967 (0.5%↓) 0.961 (0.8%↓)

Table 1: Results of the methods on CIFAR10 dataset. The leading numbers are the performance under support isolation, and
the numbers in brackets are the percentage of the degradation, compared to the no-support-isolation case.

Method ACC AUC F1

MeanTeacher 0.774 (2.5%↓) 0.737 (3.7%↓) 0.650 (6.3%↓)
MixMatch 0.755 (0.0%↓) 0.724 (1.2%↓) 0.639 (2.0%↓)
FixMatch 0.783 (0.6%↓) 0.749 (0.7%↓) 0.672 (0.6%↓)

CST 0.763 (0.7%↓) 0.718 (1.5%↓) 0.626 (2.6%↓)
Self-Training 0.744 (0.6%↓) 0.653 (1.5%↓) 0.485 (3.6%↓)

Small-Paced Self-Training (L) 0.778 (0.8%↓) 0.760 (0.4%↓) 0.687 (0.4%↓)
Small-Paced Self-Training (D) 0.796 (1.6%↓) 0.768 (1.1%↓) 0.697 (1.6%↓)

Table 2: Results of the methods on X-ray image classification task. The leading numbers are the performance under support
isolation, and the numbers in brackets are the percentage of the degradation, compared to the no-support-isolation case.

5 Experiments
We verify the proposed small-paced self-training algorithm
with linear base models (L) and deep base models (D),
against several baselines on semi-supervised learning: Mean
Teacher (Tarvainen and Valpola 2017), a semi-supervised
learning approach that leverages the consistency of model
outputs over different timestamp of the whole training.
MixMatch (Berthelot et al. 2019), a holistic deep semi-
supervised learning approach that combines multiple com-
ponents from different SSL diagrams. FixMatch (Sohn
et al. 2020), another recent holistic approach that com-
bines consistency regularization and pseudo-labeling, which
shown great ability on semi-supervised tasks. Cycle Self-
Training (Liu, Wang, and Long 2021), a self-training vari-
ety designed for domain adaptation. Last, we compare stan-
dard Self-Training (Lee 2013) to show the small-paced re-
striction helps the learning process in our setup. All methods

adopt ResNet-50 pre-trained on imagenet as the backbone;
Small-Paced Self-Training (ours) and standard Self-training
are not using image augmentation as the other methods do.

We compare the methods on commonly used CIFAR10,
CIFAR100 (Krizhevsky 2009) dataset and real-world X-ray
pneumonia identification task (Kermany et al. 2018), which
we refer to as Pneumonia hereinafter. On CIFAR10, we
simulate the situation that we want to build a model to iden-
tify vehicles against animals, but the label collecting process
is affected by a filter model built on automobile and dog
images. Such situations commonly occur when we want to
build a model for identification of some interesting object in
real-world, but only has limited data to train an imperfect
model at the start. For the pneumonia identification task,
the X-ray images are collected from healthy children and
children with pneumonia. The task is to identify the virus
pneumonia patients, where the labeled data comes from the



patients who are formerly diagnosed with bacterial pneumo-
nia. We describe the details of the datasets in appendix due
to the tight space.

Performance under support isolation. The experimen-
tal results on CIFAR10 and Pneumonia are shown in Ta-
bles 1 and 2. The results on CIFAR100 are reported in Ap-
pendix C due to the page limit. It can be observed that Small-
Paced Self-Training outperforms the baseline approaches
when support isolation occurs in the datasets even with-
out data augmentation techniques. The Small-Paced Self-
Training algorithm with deep base models achieves better
performance than using the linear models, while both algo-
rithms achieve strong performance.

Impact of the support isolation. Yet the effect of the fil-
tering mechanism can be regarded as some sort of distribu-
tion mismatch of the labeled and unlabeled data, the prob-
lem we try to address in this paper is one of the most se-
vere cases. The main obstacle is that the support of the la-
beled data cannot cover the unlabeled data. To demonstrate
the difficulty induced by the support isolation, we alter the
CIFAR10 and Pneumonia dataset used in the previous
experiment by adding labels of 5% unlabeled data selected
at random and removing the labels of the identical amount
of labeled data. We denote this altered experiment setup as
the no-support-isolation case. As the label rate remains un-
changed and both labeling setup suffers from huge selec-
tion bias, ordinary semi-supervised learning approaches are
affected hugely by the change of the distribution support.
In Tables 1 and 2, we report the performance degradation
when support isolation happens, compared to no support iso-
lation case. The full results of the no-support-isolation case
is contained in appendix. The Small-Paced Self-Training al-
gorithms are shown to be impacted less from the support
isolation problem than the standard self-training. Notice that
Small-Paced Self-Training algorithms do not leverage image
augmentation and consistency regularization techniques like
all of the other baselines do, which are shown to be powerful
for image-related tasks. The low performance degradation
shows the effectiveness of the small-paced restriction.

6 Related Work
Semi-supervised learning (Chapelle, Schlkopf, and Zien
2006; Zhu et al. 2009) aims to improve learning by utiliz-
ing unlabeled data, traditionally can be classified as genera-
tive models (Shahshahani and Landgrebe 1994; Nigam et al.
2000), low density separation based methods (Joachims
1999; Chapelle, Chi, and Zien 2006; Li, Kwok, and Zhou
2010), graph based methods (Blum and Chawla 2001; Zhu,
Ghahramani, and Lafferty 2003), and disagreement based
methods (Blum and Mitchell 1998; Zhou and Li 2005). With
the rise of deep neural networks in recent years, new ap-
proaches are proposed to exploit the power of stronger mod-
els for more challenging tasks. Consistency regularization
methods are based on the concept that specific types of
perturbations applied to an unlabeled instance should not
change the model prediction (Rasmus et al. 2015; Zhang
et al. 2018). Entropy minimization methods encourage the
models to make confident predictions to avoid the decision

boundary going near dense regions (Grandvalet and Bengio
2005). Deep generative models try to recover the data distri-
bution for better feature learning (Kingma et al. 2014; Ku-
mar, Sattigeri, and Fletcher 2017). Graph neural networks
exploit the graphical structure of the data with neural net-
works (Scarselli et al. 2008; Kipf and Welling 2017; Li et al.
2016). Holistic models like MixMatch, FixMatch unify mul-
tiple strategies and components to achieve strong perfor-
mance (Berthelot et al. 2019; Sohn et al. 2020).

The problem we address in this paper is also related
to, yet different from, domain adaptation (Pan and Yang
2010), sample selection bias (Zadrozny 2004), and covariate
shift (Shimodaira 2000). Domain adaptation aims to align
source and target domains into one common representation
space, so that the labeled source data can be helpful for
building a model for the target domain without target la-
bel (Hoffman et al. 2018; Zhao et al. 2019; Li et al. 2020).
Literature on sample selection bias and covariate shift prob-
lems employ importance reweighting or other techniques
to compensate for the distribution density shift (Zadrozny
2004; Liu and Ziebart 2014; Shimodaira 2000; Sugiyama,
Krauledat, and Müller 2007).

Self-training, also known as pseudo-labeling, is a type of
method that trains models according to the previous predic-
tion on the unlabeled data (Lee 2013; Grandvalet and Bengio
2005). It is drawing increasing attention, as it shows great ef-
fectiveness in semi-supervised learning, domain adaptation,
and other related tasks (Sohn et al. 2020; French, Mack-
iewicz, and Fisher 2018; Hu et al. 2017). Though the idea
of self-training can date back a very long time, there is lit-
tle progress in the theoretical understanding of self-training
type of algorithms until recent years. Kumar, Ma, and Liang
(2020) conducted theoretical analysis for self-training of lin-
ear models in the scenario of gradual domain adaptation.
Wei et al. (2021) theoretically analyzed the self-training with
input-consistency regularization, provided improved under-
standing for applying self-training algorithms with deep
learning models.

7 Conclusion

We study the semi-supervised learning problem where the
label missing is caused by a proceeding filtering mecha-
nism. Such filtering mechanism dominated label collecting
process leads to the isolation of the support of the labeled
and unlabeled data distributions, making the problem more
difficult than usual. In this case, the standard self-training
approach suffers from overconfidence on instances far away
from the current knowledge boundary. We propose Small-
Paced Self-Training to tackle this problem, which gradually
pushes the knowledge boundary. We show that by leveraging
a small-paced restriction, the algorithm can produce reliable
pseudo labels on the overall dataset. The provided selection
algorithm may not be the only way to enjoy the theoretical
guarantee, there might be more effective algorithms being
developed based on the idea of limiting the distributional
distance for self-training.
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A Proof of Theorem 7
We first prove the following lemma, and then give the proof
of the theorem.
Lemma 13. Suppose Pi is some conditional distribution de-
fined on X ∈ Rd satisfies (0.5, c)-expansion for some c > 1.
Suppose A and B are two disjoint subsets of X such that
X = A ∪B. Then there exist A∗ ⊆ A and B∗ ⊆ B satisfy:

W∞(Pi(X|X ∈ A∗), Pi(X|X ∈ B∗)) < δ .

Proof. Without loss of generality we assume Pi(A) ≥
Pi(B). Let B′ = N (A) \ A, A′ = N (B) \ B. With
(0.5, c)-expansion we have A′ and B′ non-empty. Then for
any x1 ∈ A′, there exists x2 ∈ B′, ∥x1 − x2∥ ≤ δ.

Let C be any hyperball with diameter be δ containing x1

and x2. Then A∗ = A ∩ C and B∗ = B ∩ C satisfy the
condition.

Proof of Theorem 7. By applying Theorem 13 on P+1 and
P−1 by letting the set A and B be X (t)

L and X (t)
U , we can

easily find for subset X̂ (t)
L,+, X̂ (t)

U,+, X̂ (t)
L,−, X̂ (t)

U,−, in the feature
space such that:

W∞(P+(X̂ (t)
L,+), P+(X̂ (t)

U,+)) < δ ,

W∞(P−(X̂ (t)
L,−), P−(X̂ (t)

U,−)) < δ .

We next prove the separability for linear class. Let CY

be the hyperball constructed in the proof of Theorem 13 for
Y = {+1,−1}. Then CY covers the support of the selected
class conditional distribution: (X̂ (t)

L,Y ∪ X̂
(t)
U,Y ) ⊆ CY . Then

due to sap, with probability at least 1 − µ, the distance be-
tween the centers of two hyperballs is at least δ. Then the
two hyperballs are linearly separable.

Finally, as long as the distributions has finite densities, the
class prior probabilities can be easily adjusted to be equal by
removing some elements from the subsets.

B Proof of Theorems in Section 3.2
Here we give the proof omitted in Section 3.2. For some part
of the proof we follow the theoretical analysis in (Kumar,
Ma, and Liang 2020).

B.1 Proof of Theorem 8
We follow the proof in (Shalev-Shwartz and Ben-David
2009). Let A = {l(y, f(x))} where ℓr is the ramp loss, f
is a linear model with ∥w∥ < R. Since ramp loss ℓr is L-
Lipschitz function and its Lipschitz constant is 1, we have
R(A) ≤ R(F ), where R(F ) is the Rademacher complex-
ity of the linear class. The Rademacher complexity of linear
models with ∥w∥ < R and ∥x∥ < B is known as:

R(F ) <
BR√
n
.

By applying the generalization error bound by Radema-
cher complexity:

L(f̂ , P )− L(f∗, P ) ≤ 4R(A) +

√
2 log 2/δ

n
,

we have

L(f̂ , P )− L(f∗, P ) ≤
4BR+

√
2 log 2/δ√
n

.

B.2 Proof of Theorem 9
We first show that if model f(x) = w⊤x + b has low ramp
loss L(f, P ), then the probability of an instance has a small
margin (yf(x) < ρR) is bounded from above.

L(f, P ) = EX,Y∼P [ℓr(Y f(X))]

≥ EX,Y∼P [ℓr(Y f(X))I[Y f(X) ≤ ρR]]

≥ EX,Y∼P [(1− ρR)I[Y f(X) ≤ ρR]]

= (1− ρR)P [Y f(X) ≤ ρR]

and thus

P (Y f(X) ≤ ρR) ≤ 1

1− ρR
L(f, P ) . (19)

Then we show that as long as the probability of an in-
stance has a small margin is bounded, the error on distribu-
tion Q which has small distance with P , is bounded from
above too.

With the assumption that ρ(P,Q) = ρ < 1
R , there exist

mapping functions Ty : Rd → Rd for y ∈ {+1,−1} such
that for every measurable set A ⊆ Rd, PY=y(T

−1(A)) =
QY=y(A), and supx ∥Ty(x)− x∥2 ≤ ρ.1

The error of model f on distribution Q is:

Err(f,Q) =
∑
y

Q(Y = y)Q(Y f(X) ≤ 0|Y = y) ,

(20)
by applying the inverse of the mapping,

Q(Y = y)Q(Y f(X) ≤ 0|Y = y)

= P (Y = y)P (Y f(T−1
y (X)) ≤ 0|Y = y) .

Given that ∥T−1
y (X)−X∥ ≤ ρ and ∥w∥ ≤ R, we have:

∥f(T−1
y (X))− f(X)∥ ≤ ρR .

Thus,

P (Y = y)P (Y f(T−1
y (X)) ≤ 0|Y = y)

≤ P (Y = y)P (Y f(X) ≤ ρR|Y = y) .

Substitute the above inequality into Equation (20),

Err(f,Q) ≤
∑
y

P (Y = y)P (Y f(X) ≤ ρR|Y = y)

= P (Y f(X) ≤ ρR) .

Then by combining with Inequality (19), we have:

Err(f,Q) ≤ 1

1− ρR
L(f, P ) .

1The bipartite matching found in Section 4 can be regarded as
a mapping on the empirical distribution.



B.3 Proof of Theorem 10
The loss of model f on the true distribution PXPY |X can be
rewritten as:

L(f, PXPY |X) =

E[ℓr(Y f(X))I[Y = Y ′]] + E[ℓr(Y f(X))I[Y ̸= Y ′]] .

In the case of the pseudo label being correct:

E[ℓr(Y f(X))I[Y = Y ′]]

≤ E[ℓr(Y f(X))] = L(f, PXPY |X) . (21)

Otherwise, recall that the ramp loss is bounded in [0, 1], and
P (Y ̸= Y ′) ≤ ϵ, we have:

E[ℓr(Y f(X))I[Y ̸= Y ′]] ≤ E[I[Y ̸= Y ′]] ≤ ϵ . (22)

By combining Inequalities (21) and (22), we have:

L(f, PXPY |X) ≤ L(f, PXPY ′|X) + ϵ .

B.4 Proof of Theorem 11
Let f∗ be the population minimizer on the latent pseudo-
labeled distribution PXPY ′|X , and pseudo-labeler f be the
empirical minimizer trained with pseudo labels D̃PL ∼
PXPY ′|X :

f∗ = argminL(f, PXPY ′|X) ,

f = argminL(f, D̃PL) .

By Theorem 10 we have:

L(f, P ) ≤ L(f, PXPY ′|X) + ϵ .

Combining with Theorem 8, we know that:

L(f, P ) ≤ L(f∗, PXPY ′|X) + ϵ+
4BR+

√
2 log 2/δ√
n

.

(23)
Since PXPY ′|X is α∗-separable, which is guaranteed by our
subset selection, we have L(f∗, P ) ≤ α∗, and thus

L(f, P ) ≤ α∗ + ϵ+
4BR+

√
2 log 2/δ√
n

. (24)

By Theorem 9 we have:

Err(f,Q) ≤ 2

1− ρR
L(f, P ) .

Substituting Inequality (24) into the above inequality we
have:

Err(f,Q) ≤ 2

1− ρR
(α∗ + ϵ+

4BR+
√
2 log 2/δ√
n

) .

C Additional Experiment Results
C.1 Dataset Description
We use CIFAR10 to simulate the situation that we want to
build a model to identify vehicles against animals, while the
data labels at hand are collected after a premature filtering
model build on automobile and dog images. An image will
be labeled only if it is classified as the animal by the filtering

model. We train a linear SVM with the automobile and dog
images as the filtering model, which provides an unsatisfac-
tory filtering result. Notice that since the filtering model is
imperfect, both class labels occur in the labeled data. The
labeled rate is 40.5%. Notice that though the labeled rate is
relatively high, the distribution of the labeled and the unla-
beled data are different and suffer from the support isolation
problem. Thus, the learning problem is more difficult than
normal semi-supervised learning problems with labeled data
that are i.i.d. sampled or sampled with small bias.
CIFAR100 is used to simulate a similar situation, where

we want to train a creature vs. non-creature model. The data
collecting process is affected by a previously trained lousy
filtering model, an image will be labeled if and only if the fil-
tering model predicts it as a positive. Here we simulate the
filtering model by training a linear SVM on a small set of
the image classes: “medium-sized mammals”, “small mam-
mals”, “flowers”, and “trees”, versus “large natural outdoor
scenes”. The filtering model recognizes only a small part of
the whole images, and produces a lousy result on filtering
the positive class on the whole dataset. The labeled rate is
6.02%.
Pneumonia dataset contains 3875 X-ray images in to-

tal. The task is to train a model for predicting if the patient
has bacterial or viral pneumonia, but the labels are collected
only if a legacy linear detection model trained with bacterial
pneumonia and normal images classifies the image as posi-
tive. The filtering model causes a severe label missing in the
viral pneumonia patients, which makes the learning problem
difficult. The labeled rate is 37.1%.

C.2 Experiment Results on CIFAR100
We evaluate our method on CIFAR100, the results are
shown in Table 3.

Method ACC AUC F1

MeanTeacher .649 .708 .643
MixMatch .722 .752 .682
FixMatch .831 .839 .782

CST .798 .749 .670
Self-Training .682 .752 .684

Small-Paced Self-Training (D) .853 .858 .797

Table 3: Results of the methods on CIFAR100 dataset.

C.3 Ablation Study
The results of ablation study is shown in Table 4.

Dataset Method ACC AUC F1

CIFAR10 ST 0.921 0.923 0.917
CIFAR10 SPST (Ours) 0.973 0.967 0.961

Pneumonia ST 0.744 0.653 0.485
Pneumonia SPST (Ours) 0.796 0.768 0.697

Table 4: Ablation study results.



C.4 Subset Selection
We demonstrate the effect of the subset selection mech-
anism by calculating the average distance of selected la-
beled and unlabeled instances, on CIFAR10 dataset and
Pneumonia. Figure 3 shows the average distance w.r.t. the
varying pseudo-labeling rate.
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Figure 3: Average distance of selected L and U data, w.r.t.
the pseudo-labeling rate.

C.5 Complementary Results of the
No-support-isolation Case

The experimental results of the no-support-isolation case is
listed in Tables 5 and 6. These results are not following the
problem setup we study, but used as a reference to calculate
the performance degradation in support-isolation case.

Method ACC AUC F1

MeanTeacher .954 .953 .943
MixMatch .893 .906 .880
FixMatch .970 .972 .963

CST .958 .959 .948
Self-Training .976 .973 .970

Small-Paced Self-Training (L) .953 .952 .942
Small-Paced Self-Training (D) .975 .972 .969

Table 5: Results of the methods on CIFAR10 dataset, no sup-
port isolation case.

Method ACC AUC F1

MeanTeacher .794 .766 .694
MixMatch .755 .733 .652
FixMatch .788 .754 .676

CST .768 .729 .643
Self-Training .749 .663 .690

Small-Paced Self-Training (L) .784 .763 .690
Small-Paced Self-Training (D) .809 .776 .708

Table 6: Results of the methods on X-ray image classifica-
tion task, no support isolation case.


