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Abstract

Semi-supervised learning, which aims to construct learners
that automatically exploit the large amount of unlabeled data
in addition to the limited labeled data, has been widely ap-
plied in many real-world applications. AUC is a well-known
performance measure for a learner, and directly optimizing
AUC may result in a better prediction performance. Thus,
semi-supervised AUC optimization has drawn much atten-
tion. Existing semi-supervised AUC optimization methods
exploit unlabeled data by explicitly or implicitly estimating
the possible labels of the unlabeled data based on various dis-
tributional assumptions. However, these assumptions may be
violated in many real-world applications, and estimating la-
bels based on the violated assumption may lead to poor per-
formance. In this paper, we argue that, in semi-supervised
AUC optimization, it is unnecessary to guess the possible
labels of the unlabeled data or prior probability based on
any distributional assumptions. We analytically show that the
AUC risk can be estimated unbiasedly by simply treating
the unlabeled data as both positive and negative. Based on
this finding, two semi-supervised AUC optimization methods
named SAMULT and SAMPURA are proposed. Experimental
results indicate that the proposed methods outperform the ex-
isting methods.

Introduction
In many real-world applications, collecting a large amount
of unlabeled data is relatively easy, while obtaining the la-
bels for the collected data is rather expensive since much
human effort and expertise is required for labeling. Semi-
supervised learning (Chapelle, Schlkopf, and Zien 2006;
Zhu et al. 2009), aiming to construct learners that automati-
cally exploit the large amount of unlabeled data in addition
to the limited labeled data in the purpose of improving the
learning performance, has drawn significant attention. Many
semi-supervised learning methods have been proposed. To
effectively exploit the unlabeled data, almost all of these
methods elaborate to link the labeled data and the unlabeled
data based on certain distributional assumption (Chapelle,
Schlkopf, and Zien 2006), such as the cluster assumption,
the manifold assumption, etc., and construct the learner by
explicitly or implicitly estimating the labels of unlabeled in-
stances.
Copyright c© 2018, Association for the Advancement of Artificial
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AUC (area under ROC curve) (Hanley and McNeil 1982),
which measures the probability of a randomly drawn pos-
itive instance being ranked before a randomly drawn neg-
ative instance, is a widely-used performance measure for a
learner, especially when the data distribution exhibits certain
imbalance. Directly optimizing the AUC during the learning
procedure usually lead to a better prediction performance.
Many studies are elaborated to show that AUC can be ef-
fectively and efficiently optimized (Herschtal and Raskutti
2004; Gao and Zhou 2015; Gao et al. 2013; Ying, Wen, and
Lyu 2016).

Some efforts have been devoted to AUC optimization
in semi-supervised settings (Amini, Truong, and Goutte
2008; Fujino and Ueda 2016). These methods rely on
the aforementioned distributional assumptions. However,
those assumptions may be violated in real-world appli-
cations and the learner may be biased when explicitly
or implicitly estimating the labels based on the violated
assumptions, resulting in poor performance or even per-
formance degradation (Cozman and Cohen 2002). Sakai,
Niu, and Sugiyama (2017) proposed an unbiased semi-
supervised AUC optimization method based on positive-
unlabeled learning. However, such a method requires an ac-
curate estimation of the prior probability to reweight the un-
labeled data, which is usually difficult especially when the
number of labeled data is extremely small.

In this paper, we argue that in semi-supervised AUC op-
timization problem, it is unnecessary to guess the possible
labels of the unlabeled data or prior probability based on
any distributional assumptions. We theoretically show that
the AUC risk can be estimated unbiasedly by treating the
unlabeled data as both positive and negative without any dis-
tributional assumptions.

Such a theoretical finding enables us to address semi-
supervised AUC optimization problem by simply treating
the unlabeled data as both positive and negative data, with-
out designing specific strategies to identify the possible la-
bels of the unlabeled data. Based on this theoretical finding,
we propose two novel semi-supervised AUC optimization
methods: SAMULT, a straightforward unbiased method by
regarding the unlabeled data as both positive and negative
data, and SAMPURA, an ensemble method by random parti-
tioning the unlabeled data into pseudo-positive and pseudo-
negative sets to train base classifiers. The experimental re-



sults based on linear models indicate that the proposed meth-
ods outperform the competing methods, and such a result
can be easily generalized to non-linear model case. In addi-
tion, our finding can also facilitate AUC optimization using
only positive and unlabeled data, by simply treating all un-
labeled instances as the negatives.

The remainder of this paper is organized as follows. We
first introduce preliminaries. Then, we present our theoreti-
cal finding, describe the two proposed semi-supervised AUC
optimization methods crafted based on the finding and report
the experimental results. Finally, we discuss on the related
works and conclude the paper.

Preliminary
In supervised learning, the sets of positive and negative data
can be denoted as:

XP :={xi}nP

i=1
i.i.d.∼ pP(x) := p(x | y = +1) , and

XN :={x′j}
nN

j=1

i.i.d.∼ pN(x) := p(x | y = −1) .

For simplicity, we assume a linear model f(x) = w>x in
this paper. The non-linear case can be realized by applying
a non-linear feature mapping over the input space.

Since AUC is equivalent to the probability of a randomly
drawn positive instance being ranked before a randomly
drawn negative instance (Hanley and McNeil 1982), it can
be formulated as:

AUC = 1− E
x∈XP

[ E
x′∈XN

[`01(w>(x− x′))]] . (1)

Maximizing AUC is equivalent to minimizing the follow-
ing AUC risk. To avoid confusion, we denote the supervised
AUC risk as PN-AUC risk:

RPN = E
x∈XP

[ E
x′∈XN

[`01(w>(x− x′))]] . (2)

In semi-supervised setting, the set of unlabeled data is
available. The unlabeled instances are considered to be
drawn from a mixture of the positive distribution and neg-
ative distribution:

XU := {x′′k}
nU

k=1
i.i.d.∼ p(x) = θP pP(x) + θNpN(x) , (3)

where θP and θN are the prior probabilities of the positive
and negative class.

The existing semi-supervised AUC optimization meth-
ods (Amini, Truong, and Goutte 2008; Fujino and Ueda
2016; Sakai, Niu, and Sugiyama 2017) rely on distributional
assumptions or prior knowledge to infer the labels of un-
labeled data or to reweight them. If the assumptions hold or
the prior knowledge is reliable, these methods may achieve a
reasonably good performance. However, when the assump-
tions are violated or the the prior knowledge is not available,
these methods may perform poorly.

We argue that in semi-supervised AUC optimization, it
is unnecessary to estimate the labels of unlabeled data. We
theoretically and empirically show that we can achieve un-
biased semi-supervised AUC optimization without distribu-
tional assumptions or prior knowledge about the distribution
or class prior probabilities.

Unbiased Estimation without Guessing Label
The general idea of this work is to show that optimizing the
risk estimated with the positive data and the unlabeled data
treated as negative (or the negative data and the unlabeled
data treated as positive) is equivalent to optimizing an unbi-
ased risk. Theorem 1 gives a formal statement.
Theorem 1. PU-AUC risk RPU which is estimated by pos-
itive and unlabeled data treated as negative data, and UN-
AUC riskRNU which is estimated by negative and unlabeled
data treated as positive data, are equivalent to the super-
vised PN-AUC riskRPN with a linear transformation, where
RPU and RNU are defined as:

RPU = E
x∈XP

[ E
x′′∈XU

[`01(w>(x− x′′))]] , (4)

RNU = E
x′′∈XU

[ E
x′∈XN

[`01(w>(x′′ − x′))]] . (5)

Proof. Due to the linearity of the expectation, we have:

RPU = E
x∈XP

[ E
x′′∈XU

[`01(w>(x− x′′))]]

= E
x∈XP

[θP E
x̄∈XP

[`01(w>(x− x̄))]

+ θN E
x′∈XN

[`01(w>(x− x′))]]

=
1

2
θP + θN E

x∈XP

[ E
x′∈XN

[`01(w>(x− x′))]] .

It is noteworthy that the expected risk of pairs over XP×XP

is symmetric, so it is equal to a constant. Thus

RPU = θNRPN +
1

2
θP . (6)

Similarly, we also have:

RNU = θPRPN +
1

2
θN . (7)

Above all, we prove that RPU and RNU is equivalent to
the supervised AUC risk RPN with a linear transformation.

Intuitively, the PU-AUC risk RPU can be regarded as a
weighted average of two parts: one is the PN-AUC risk on
the labeled positive data and unlabeled negative data, and the
other is AUC risk over XP ×XP yielded by positive labeled
data and positive unlabeled data. Since the labeled positive
data and unlabeled positive data are drawn from the same
distribution, the probability of ranking a labeled positive in-
stance after an unlabeled positive instance is 1/2.

Theorem 1 suggests that optimizing RPU or RNU is
equivalent to optimizing the supervised AUC risk asymptot-
ically. Thus, the unlabeled data can be simply treated as the
positives or the negatives, and it is unnecessary to estimate
the labels of unlabeled data based on certain assumption.

Furthermore, with the fact that θP + θN = 1, summing
up Eq. (6) and Eq. (7) results in:

RPU +RNU −
1

2
= RPN . (8)

Eq. (8) suggests that when we have positive, negative
and unlabeled data, we can conduct unbiased AUC risk es-
timation without knowing the class prior probabilities θP



and θN . This allows us to design new unbiased AUC risk
estimators that help to utilize the unlabeled data. Inspired
by this fact, we propose a method named SAMULT (Semi-
supervised AUC Maximization by treating the UnLabeled
data in Two ways), and further extend it to an ensemble
method SAMPURA (Semi-supervised AUC Maximization
by Partitioning Unlabeled data at RAndom). Further, when
only positive and unlabeled data are available, RPN and
RNU become zero and only RPU is used to learn the model.
In this case, SAMULT degenerates to a special form similar
to the supervised AUC optimization. The technical details of
the two methods are described in the following section.

Proposed Methods
Based on our theoretical finding, we propose two semi-
supervised AUC optimization methods: SAMULT and SAM-
PURA. SAMULT treats the unlabeled data as both positive
and negative data to compute the risk estimator based on
Eq. (8), and then combines it with a supervised AUC risk
estimator to get an unbiased AUC risk estimator. More-
over, since we do not need to estimate the labels from the
whole dataset, we can bootstrap-sample multiple data set
from the unlabeled data, label them as either positive or neg-
ative and trains multiple classifiers. Thus, we further extend
SAMULT to an ensemble version, namely SAMPURA, which
firstly trains multiple base classifiers by randomly parti-
tioning the unlabeled data into pseudo-positive and pseudo-
negative datasets to augment the labeled data, and then ag-
gregates them to generate a strong classifier.

SAMULT
Based on Eq. (8), we propose the following AUC risk esti-
mator that utilizes all the labeled and unlabeled data in semi-
supervised AUC optimization:

R̂PNU = γR̂PN + (1− γ)(R̂PU + R̂NU −
1

2
) , (9)

where γ ∈ [0, 1] is the trade-off parameter, and

R̂PN =
1

nPnN

∑
x∈XP

∑
x′∈XN

`(w>(x− x′)) , (10)

R̂PU =
1

nPnU

∑
x∈XP

∑
x′′∈XU

`(w>(x− x′′)) , (11)

R̂NU =
1

nUnN

∑
x′′∈XU

∑
x′∈XN

`(w>(x′′ − x′)) . (12)

Since the 0-1 loss is discrete and difficult to optimize, in
practice, we replace the 0-1 loss with square loss `(z) =

(1− z)2, which has been proven to be consistent with AUC
asymptotically (Gao and Zhou 2015).

To reduce the risk of overfitting, we optimize the risk es-
timator with an `2-regularizer to learn the classifier:

min
w

R̂PNU(w) + λ||w||2 , (13)

where the parameter λ ≥ 0 is a trade-off between the risk
and the regularizer.

In practice, we omit the constant in Eq. (9) which leads to
the same minimizer of Eq. (9). The analytical solution of the
optimization problem (Eq. (13)) can be computed as:

ŵ = (γHPN + (1− γ)(HPU + HNU) + λId)
−1

(γhPN + (1− γ)(hPU + hNU)) ,
(14)

where

hPN =
1

nP
X>P1nP −

1

nN
X>N1nN ,

hPU =
1

nP
X>P1nP

− 1

nU
X>U1nU

,

hNU =
1

nU
X>U1nU −

1

nN
X>N1nN ,

HPN =
1

nP
X>PXP −

1

nPnN
X>P1nP

1>nN
XN

− 1

nPnN
X>N1nN1

>
nP

XP +
1

nN
X>NXN ,

HPU =
1

nP
X>PXP −

1

nPnU
X>P1nP

1>nU
XU

− 1

nPnU
X>U1nU1

>
nP

XP +
1

nU
X>UXU ,

HNU =
1

nU
X>UXU −

1

nUnN
X>U1nU

1>nN
XN

− 1

nUnN
X>N1nN1

>
nU

XU +
1

nN
X>NXN ,

XP, XN, andXU are positive, negative and unlabeled in-
stance matrices, respectively, 1d is d-dimensional all-one
vector, and Id is the d-dimensional identity matrix. To
avoid the O(d3) computation of matrix inverse, we adopt
Sherman-Morrison formula to bring down the computa-
tional cost in practice.

When only the positive and unlabeled data are available,
R̂PN and R̂NU are zero, and SAMULT degenerates to a
special form where only R̂PU is optimized. Omitting the
trading-off parameter λ and the constant term, the optimiza-
tion objective of SAMULTP+U becomes:

min
w

R̂PU(w) + λ||w||2 . (15)

This formulation is identical to the supervised AUC opti-
mization by treating the unlabeled data as negative. This in-
dicates that the positive-unlabeled AUC optimization prob-
lem can be solved as a supervised AUC optimization prob-
lem by treating the unlabeled data as negative data.

In summary, SAMULT optimizes a weighted average of
an unbiased supervised AUC risk estimator R̂PN and an
unbiased semi-supervised AUC risk (R̂PU + R̂NU − 1

2 ).
SAMULT does not require carefully designed strategies to
identify the labels of the unlabeled data, or any estima-
tion of the class prior probabilities to reweight the unla-
beled data, so it is easy to implement with just a few lines
of code. Algorithm 1 shows the procedure of SAMULT.
It is noteworthy that since AUC optimization aims to op-
timize the ranking quality of the learner, SAMULT does



not determine the decision boundary. To generate the fi-
nal classification of instances, the stand-alone thresholding
strategies (e.g., (Arampatzis, Kamps, and Robertson 2009;
Lipton, Elkan, and Naryanaswamy 2014)) based on the
ranking list generated by the AUC optimization can be em-
ployed.

Algorithm 1 SAMULT

1: Input: XP, XN, XU, λ, γ
2: Compute hPN, hPU, hNU, HPN, HPU, HNU

3: Compute closed form solution of ŵ (Eq. (14))
4: Output: ŵ

SAMPURA
Since minimizing the losses over both PU and UN instance
pairs helps to learn the classifier, a straightforward idea
is to use the unlabeled data to augment the positive and
negative data. We equally divide the unlabeled data XU

into pseudo-positive data XU+ and pseudo-negative data
XU− to augment the original positively and negatively la-
beled data, respectively. By assuming that the instances in
XP′ = XP ∪ XU+ should be ranked before those in XN,
and the instances in XP should be ranked before those in
XN′ = XN ∪ XU− , the unbiased risk estimator can be de-
fined as:

R̂PNU =
1

3
(R̂P′N + R̂PN′ −

1

2
)

=
1

3

( 1

nP′nN

∑
x∈XP′

∑
x′∈XN

`(w>(x− x′))

+
1

nPnN′

∑
x∈XP

∑
x′∈XN′

`(w>(x− x′))− 1

2

)
.

(16)
By generating different partition of the unlabeled data, we

can train multiple classifiers to obtain an ensemble, which
may potentially reduce the variance. In each partition, we
minimize an equivalent empirical risk with an `2-regularizer
to obtain the base classifier:

min
w

R̂P′N + R̂PN′ + λ||w||2 , (17)

and then take the average of those ws to construct the final
ensemble.

The analytical solution of the base classifiers can be com-
puted by

ŵ = (HP′N + HPN′ + λId)
−1

(hP′N + hPN′) , (18)

where

hP′N =
1

nP′
X>P′1nP′ −

1

nN
X>N1nN ,

hPN′ =
1

nP
X>P1nP

− 1

nN′
X>N′1nN′ ,

HP′N =
1

nP′
X>P′XP′ −

1

nP′nN
X>P′1nP′1

>
nN

XN

− 1

nP′nN
X>N1nN

1>nP′
XP′ +

1

nN
X>NXN ,

HPN′ =
1

nP
X>PXP −

1

nPnN′
X>P1nP

1>nN′
XN

− 1

nPnN′
X>N′1nN′1

>
nP

XP +
1

nN′
X>N′XN′ ,

and XP′ and XN′ are the instance matrices of XP′ and XN′ ,
respectively.

The procedure of SAMPURA is shown in Algorithm 2.

Algorithm 2 SAMPURA

1: Input: XP, XN, XU, λ, T
2: for t = 1→ T do
3: Random partition XU into XU+ and XU− equally
4: Compute hP′N, hPN′ , HP′N, HPN′

5: XP′ = [X>P |X>U+ ]>,XN′ = [X>N |X>U− ]>

6: Compute hP′N, hPN′ HP′N, HPN′

7: Compute closed form solution of ŵ(t) (Eq. (18))
8: end for
9: Output: ŵ = 1

T

∑T
t=1 ŵ

(t)

Experiment
We evaluate our methods on 20 widely-used datasets, in-
cluding 18 datasets from UCI repository (Lichman 2013),
and the ijcnn1 and the madelon (Guyon et al. 2005). Table 1
summarizes the statistics of these datasets.

Table 1: Statistics of the datasets.

Dataset # Instance # Features

australian 690 42
breast 277 9
breastw 683 9
clean1 476 166
colic 188 13
colic.orig 205 17
credit-a 653 15
credit-g 1,000 20
fourclass 862 2
german 1,000 59
haberman 306 14
heart 270 9
house 232 16
ijcnn1 141,691 22
madelon 2600 500
parkinsons 195 22
phishing 11,055 68
vehicle 435 16
vote 232 16
wdbc 569 14

We firstly examine the asymptotical property of the model
trained by SAMULT (optimizing PNU-AUC risk R̂PNU) and
SAMULTP+U (optimizing PU-AUC risk R̂PU), to show the
validity of Theorem 1.
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Figure 1: Figure (a), (b), and (c) show the AUC (on test set) vs. training set size curves of classifiers trained by fully-supervised,
SAMULT, and SAMULTP+U. For fully-supervised case, all data in training set is labeled. For SAMULT and SAMULTP+U, 10%
data in training set is labeled. SAMULTP+U uses only positive and unlabeled data. Roughly 20% data is held out as the test set.
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Figure 2: Figure (a), (b), and (c) shows the cosine similarity (cos〈ŵ, ŵ∗〉) vs. training set size curves of classifiers trained by
fully-supervised, SAMULT, and SAMULTP+U, where ŵ∗ is learned from all available data with label, and ŵ is learned from
training sets of different sizes. For fully-supervised, all data in training set is labeled. For SAMULT and SAMULTP+U, 10% data
in training set is labeled. SAMULTP+U uses only positive and unlabeled data. Roughly 20% data is held out as the test set.

Secondly, we compare our methods to the state-of-the-
art semi-supervised AUC optimization methods. All exper-
iments are repeated 50 times with random data partition,
and the average AUC scores as well as the standard devia-
tions are recorded. The parameters are chosen by grid search
through a 5-fold cross validation.

When only positive and unlabeled data are available, SA-
MULT degenerates to a special form that only the PU-AUC
risk R̂PU needs to be optimized, which is equivalent to su-
pervised AUC optimization asymptotically as shown in The-
orem 1. We conduct empirical evaluation with respect to this
degenerated case.

Asymptotical Property
According to Theorem 1, the model that minimizes the PU-
AUC risk or the PNU-AUC risk converges to the supervised
case as more data are available. We choose three datasets
with different number of features to illustrate the perfor-
mance of the classifiers learned from training sets of differ-
ent sizes by SAMULT, which optimizes the PNU risk R̂PNU,
and by SAMULTP+U, which optimizes the PU risk R̂PU, to
illustrate the validity of Theorem 1. For each experiment,
10% of the data in the training set is labeled for SAMULT

and SAMULTP+U to train the classifiers, and SAMULTP+U

uses only positive and unlabeled data. We also trained a
fully-supervised classifier (i.e., the golden rule) using all

data in training set labeled for comparison, whose perfor-
mance could be considered as an upper bound of the two
semi-supervised classifiers. Roughly 20% of the data is held
out as the test set. The experiments are repeated 10 times
with random data shuffle and partition.

Figure 1(a), 1(b), and 1(c) show the AUC of the classi-
fiers learned from the training sets of different sizes, and
Figure 2(a), 2(b), and 2(c) show the cosine similarity of the
classifiers with the optimal classifier ŵ∗ that learned from
all available data with label. It can be seen that two semi-
supervised classifiers trained by SAMULT and SAMULTP+U

converge to the fully-supervised classifier as the increasing
of the training data, in terms of AUC scores and cosine sim-
ilarities. The classifier trained by SAMULT converges faster
than the one by SAMULTP+U, since the latter does not utilize
the negative data.

Performance of the Compared Methods
We report the performance of our proposed semi-supervised
AUC optimization methods SAMULT and SAMPURA. We
compare SAMULT and SAMPURA with two state-of-the-
art semi-supervised AUC optimization methods: SSRank-
Boost (Amini, Truong, and Goutte 2008), a boosting based
algorithm for learning a bipartite ranking function with
partially labeled data, and PNU-AUC (Sakai, Niu, and
Sugiyama 2017), which is a semi-supervised AUC optimiza-



Table 2: Experimental results (mean±std of the AUC) on semi-supervised datasets over 50 repetition. The boldfaces denote the
best or comparable methods in terms of the AUC, according to the pairwise t-test at the significance level 5%. The numbers of
best or comparable case of each method are shown in the last row.

Dataset Supervised Log. Reg. SSRankBoost PNU-AUC SAMULT SAMPURA

australian .879±.029 .860±.027 .886±.013 .903±.009 .903±.009 .903±.009
breast .655±.097 .625±.095 .647±.065 .701±.029 .701±.029 .704±.026
breastw .987±.009 .980±.006 .984±.013 .992±.001 .996±.001 .996±.001
clean1 .760±.062 .725±.060 .737±.050 .767±.042 .777±.039 .782±.038
colic .829±.112 .818±.074 .721±.062 .858±.013 .869±.013 .870±.013
colic.orig .647±.093 .645±.076 .612±.081 .644±.048 .658±.049 .663±.044
credit-a .893±.024 .886±.023 .885±.013 .906±.008 .906±.007 .906±.008
credit-g .719±.043 .709±.030 .665±.027 .748±.018 .748±.018 .761±.017
fourclass .825±.023 .826±.026 .692±.029 .827±.008 .827±.008 .828±.006
german .683±.057 .672±.048 .709±.025 .727±.019 .727±.019 .729±.017
haberman .551±.086 .530±.075 .582±.067 .547±.051 .551±.045 .556±.043
heart .857±.065 .842±.060 .823±.042 .876±.025 .876±.025 .878±.024
house .975±.038 .961±.015 .972±.034 .979±.012 .979±.012 .979±.011
ijcnn1 .912±.003 .901±.004 .902±.002 .904±.009 .913±.005 .915±.004
madelon .510±.037 .541±.020 .571±.023 .528±.029 .517±.027 .530±.022
parkinsons .848±.129 .826±.082 .799±.051 .860±.023 .860±.023 .863±.011
phishing .975±.097 .972±.001 .983±.003 .974±.002 .976±.002 .985±.002
vehicle .932±.038 .922±.022 .912±.039 .965±.020 .965±.020 .970±.014
vote .965±.038 .951±.015 .972±.034 .979±.012 .979±.012 .979±.011
wdbc .971±.014 .963±.006 .964±.016 .983±.006 .983±.006 .983±.005

# Best/Comp. 2 0 4 11 15 18

tion method based on positive-unlabeled learning. Two sim-
ple baseline methods, supervised AUC optimization and lo-
gistic regression, are also compared, to show the benefit of
utilizing unlabeled data and explicitly optimizing AUC.

All experiments are repeated 50 times with random data
partition, and the average AUC scores as well as the standard
deviations are recorded. The parameters are chosen by grid
search through a 5-fold cross validation. The number of base
learners in SAMPURA is fixed on 20. Since PNU-AUC also
requires an estimation of the class prior probabilities to train
the model, we feed the ground-truth class prior probabilities
to PNU-AUC in this experiment.

Table 2 summarizes the experimental results on semi-
supervised AUC optimization. For each dataset, the method
with the best performance as well as the methods which are
comparable to the best according to a pairwise t-test at the
significance level 5%, are boldfaced.

It can be observed that SAMULT and SAMPURA achieve
best performance compared to all the competing methods.
SAMULT achieves best or comparable performance on 15
datasets and SAMPURA achieves on 18 out of 20 datasets,
while SSRankBoost and PNU-AUC only achieves best or
comparable on 4 and 11 datasets, respectively. Compared to
supervised AUC optimization, SAMULT and SAMPURA im-
prove the performance significantly on most of the datasets.
The two proposed methods are easy to implement and use,
since they do not require designing strategies to guess the
possible labels of the unlabeled data or prior knowledge of
the data.

Degeneration to AUC Optimization
for Positive and Unlabeled Data
While only the positive and unlabeled data are available, SA-
MULT degenerates to a supervised AUC optimization style
method by treating the unlabeled data as negative, as pre-
viously mentioned. In this subsection, we show that this
simple method can obtain better performance than existing
positive-unlabeled AUC optimization methods. We refer to
this degenerated method as SAMULTP+U.

We compare SAMULTP+U with two existing AUC opti-
mization methods based on only positive and unlabeled data:
PU-RSVM (Sellamanickam, Garg, and Selvaraj 2011), a
ranking SVM based method for positive and unlabeled data,
and PU-AUC (Sakai, Niu, and Sugiyama 2017), a positive-
unlabeled AUC optimization method by optimizing an un-
biased AUC risk estimator relies only on positive and unla-
beled data.

We use the same experimental setting as the previous ex-
periment. Since PU-AUC also requires an estimation of the
class prior probabilities to train the model, we feed it with
the ground-truth class prior probabilities instead of its es-
timation, which is expected to further push-up the perfor-
mance of PU-AUC.

The experimental results are shown in Table 3. The best or
comparable methods on each dataset is boldfaced, according
to paired t-test at the significance level 5%.

It is shown that SAMULTP+U achieves best performance
on 17 out of 20 datasets, while PU-RSVM only achieves



Table 3: Experimental results (mean±std of the AUC) on
positive-unlabeled datasets over 50 repetition. The boldfaces
denote the best or comparable methods in terms of the AUC,
according to the paired t-test at the significance level 5%.
The numbers of best or comparable case of each method are
shown in the last row.

Dataset PU-RSVM PU-AUC SAMULTP+U

australian .844±.034 .898±.021 .900±.019
breast .615±.104 .701±.077 .701±.077
breastw .987±.009 .993±.002 .996±.002
clean1 .709±.072 .786±.050 .796±.050
colic .807±.103 .877±.060 .877±.060
colic.orig .621±.078 .650±.068 .670±.061
credit-a .876±.028 .912±.015 .912±.015
credit-g .688±.047 .755±.028 .757±.027
fourclass .823±.031 .832±.026 .832±.025
german .642±.045 .734±.034 .736±.034
haberman .572±.083 .561±.081 .555±.080
heart .835±.073 .883±.039 .883±.040
house .945±.029 .980±.012 .983±.011
ijcnn1 .927±.005 .900±.011 .905±.012
madelon .470±.015 .533±.031 .514±.032
parkinsons .797±.089 .870±.033 .870±.032
phishing .960±.008 .966±.005 .970±.005
vehicle .942±.034 .959±.030 .966±.025
vote .945±.029 .980±.012 .983±.011
wdbc .967±.021 .984±.007 .985±.007

#Best/Com. 2 7 17

the best performance on 2 and PU-AUC on 7 datasets, re-
spectively. Compared with PU-RSVM, SAMULTP+U shows
great improvement on almost all of the datasets. Compared
with PU-SVM, although SAMULTP+U performs almost the
same or slightly better on many datasets, SAMULTP+U hardly
shows a worse performance. SAMULTP+U does not bother to
estimate the class prior probabilities while PU-AUC needs
this extra step.

Such experimental results suggest that when optimizing
AUC with only the positive and unlabeled data available,
simply treating the unlabeled data as negative is enough to
learn the model. The estimation of the class prior probabil-
ities and the strategies to identify the possible labels of the
unlabeled data could be unnecessary.

Related Work
Semi-Supervised Learning
Semi-supervised learning is highly demanded in many real-
world applications, since it is often easy to gather plenty of
unlabeled data but collecting labeled data could be expen-
sive. Most of the semi-supervised learning algorithms can
be roughly divided into four categories. Generative-model
based methods assume that the data is generated by a latent
distribution, and estimate the distribution with EM proce-
dure (Shahshahani and Landgrebe 1994; Nigam et al. 2000;

Fujino and Ueda 2016). Low density separation based meth-
ods try to find a separation hyperplane through a low-density
area to separate the labeled and unlabeled data (Joachims
1999; Chapelle, Chi, and Zien 2006; Li, Kwok, and Zhou
2010). Graph-based methods estimate the possible labels of
the unlabeled data by label propagation on the graph built
from the data (Blum and Chawla 2001; Wang and Zhang
2008). Disagreement-based methods, such as co-training,
exploit the disagreements among multiple learners during
the learning process (Blum and Mitchell 1998; Goldman
and Zhou 2000; Zhou and Li 2005; Li and Zhou 2007;
Li, Li, and Zhou 2009).

AUC Optimization
AUC is a widely-used performance measure for classifiers,
especially for problems that are highly imbalanced. Opti-
mizing AUC is a common method to learn classifiers that
rank the positive data before the negative data. Owing to
the non-convexity and discontinuousness, many surrogate
losses are proposed. Gao and Zhou (2015) studied the con-
sistency of those surrogate losses theoretically. For online
AUC optimization, Gao et al. (2013) proposed a method
that maintains a covariance matrix to optimize AUC online,
and Ying, Wen, and Lyu (2016) formalized the online AUC
optimization problem as a stochastic saddle point problem
to solve it with stochastic gradient based algorithm, which
overcomes the challenge that AUC should be computed over
instance pairs and thus storing all the data is needed.

For semi-supervised AUC optimization, Amini, Truong,
and Goutte (2008) extended the RankBoost algorithm to
semi-supervised case to learn a ranking function. Fujino
and Ueda (2016) use a generative model based algorithm
to utilize unlabeled data to optimize AUC. Sakai, Niu, and
Sugiyama (2017) proposed a semi-supervised AUC opti-
mization method by reweighting the unlabeled data, from
a positive-unlabeled learning perspective.

Conclusion
Many semi-supervised methods rely on strong distributional
assumptions or prior knowledge to guess the possible la-
bels of the unlabeled data. In this paper, we argue that, in
semi-supervised AUC optimization, it is unnecessary to de-
sign sophisticated strategies to estimate the possible labels
of the unlabeled data or the class prior probabilities. We the-
oretically show that treating unlabeled data as both positive
and negative data leads to an unbiased AUC risk estimation
asymptotically in semi-supervised AUC optimization, based
on which two semi-supervised AUC optimization methods,
namely SAMULT and SAMPURA, is proposed. Experimen-
tal results indicate that the proposed method outperform the
state-of-the-art semi-supervised AUC optimization meth-
ods. Additionally, we show that the positive-unlabeled AUC
optimization problem can also be addressed by a degener-
ated version of our method that simply treats the unlabeled
data as negative, without any distributional assumption or
prior knowledge.

The current work is based on linear models on binary
classification problem, extending this method to non-linear



and multi-class cases and conducting extensive evaluation
w.r.t more performance measures will be done in future.
Moreover, solving the proposed optimization problem us-
ing stochastic gradient descent may further scale up the pro-
posed methods to extremely large data sets, which would be
another interesting future work.
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